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Abstract

The dissemination of Large Language Models
(LLMs), trained at scale, and endowed with
powerful text-generating abilities, has made it
easier for all to produce harmful, toxic, faked or
forged content. In response, various proposals
have been made to automatically discriminate
artificially generated from human-written texts,
typically framing the problem as a binary clas-
sification problem. Early approaches evaluate
an input document with a well-chosen detec-
tor LLM, assuming that low-perplexity scores
reliably signal machine-made content. More
recent systems instead consider two LLMs and
compare their probability distributions over the
document to further discriminate when per-
plexity alone cannot. However, using a fixed
pair of models can induce brittleness in per-
formance. We extend these approaches to the
ensembling of several LLMs and derive a new,
theoretically grounded approach to combine
their respective strengths. Our experiments,
conducted with various generator LLMs, indi-
cate that this approach effectively leverages the
strengths of each model, resulting in robust de-
tection performance across multiple domains.
Our code and data are available at https:
//github.com/BaggerOfWords/MOSAIC.

1 Introduction

Large Language Models (LLMs) have greatly
improved the fluency and diversity of machine-
generated texts. The release of ChatGPT and GPT4
by OpenAI has sparked global discussions regard-
ing the new opportunities offered by AI-based writ-
ing assistants. These advances have also introduced
considerable threats such as fake news generation
(Zellers et al., 2019), and the potential for harmful
outputs such as toxic or dishonest content (Crothers
et al., 2023), among others. As it seems, the re-
search on methods to detect the origin of a given
text to mitigate the dissemination of forged content
and to prevent technology-aided plagiarism still
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lags behind the rapid advancement of AI itself.1

Many studies have focused on tools that could
spot such AI-generated outputs and mitigate these
underlying risks. From a bird’s eye view, this typ-
ically involves using detector models to discrim-
inate generator models’ outputs from legitimate
human writings. Multiple versions of this generic
text classification task have been considered, vary-
ing, e.g. the number of possible categories to distin-
guish and the amount of supervision (see Section 2).
Owing to its large user base and applications, the
largest effort has focused on one specific generator,
ChatGPT, for which training and test data are easily
obtained. Yet, the corresponding supervised binary
problem, with a unique known generator, is not the
only way to frame this task. A more challenging
problem, that we study here, is generator-agnostic
artificial text detection, where the models to be
detected are not predefined.

Our contributions. In this paper, using funda-
mental information-theoretic principles from uni-
versal compression, we derive a new ensemble
method (depicted in Figure 2) that combines the
strength of multiple LLMs into a single score to
detect forged texts. By using several models, this

1As illustrated by the discontinuation of Ope-
nAI’s detector https://openai.com/index/
new-ai-classifier-for-indicating-ai-written-text/.
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approach dispenses with the need to look for the
optimal set of detector models, and thus does not
require a validation dataset. Our experiments use
both standard benchmarks comprising multiple do-
mains and languages, as well as a new corpus of
machine-generated texts. They confirm that en-
sembling strong LLMs yields detectors that can
robustly identify a multiplicity of generators and
that compare favourably with several recent pro-
posals using a predefined set of detector models.
We also report a number a complementary analyses
exploring the effect of incrementally growing the
ensemble, of considering adapted versions of one
single model, of using a naive ensembling method,
and of processing noised versions of artificial texts.
We publicly release the code and data produced for
this study.

2 Related Work

Overview of the field. The improved text gen-
eration abilities of LLMs raise concerns about
potential misuses such as disinformation (Zellers
et al., 2019), abusive content (Crothers et al., 2023),
forged academic publications (Liu et al., 2024),
or cheating during exams (Vasilatos et al., 2023).
Since such fake texts seem difficult for humans to
spot (Gehrmann et al., 2019), the issue of automat-
ically detecting machine-generated texts has been
subject to an increasing focus. This problem can be
framed as a binary human vs. non-human decision,
as the problem of detecting one known artificial
agent (e.g., ChatGPT (Mitrović et al., 2023; Liu
et al., 2024)), or as discriminating the correct model
in a predefined list (Li et al., 2023). Some works
aim to differentiate between “machine-generated”
or “machine-polished” (Abassy et al., 2024; Liu
et al., 2024). Another distinction is between closed-
domain (e.g. scientific (Liyanage et al., 2022), aca-
demic (Liu et al., 2024) or user-generated content
(Fagni et al., 2021; Kumarage et al., 2023)) vs.
open-domain text detection. Assuming the gen-
erator models are known, various settings can be
considered, depending on whether models can be
openly queried (open parameters), whether they
expose their full logits, or just the top prediction
(and associated probability), etc.

Supervised methods. Supervised detection with
a single generator often achieves detection accuracy
rates in the high 90s (Zellers et al., 2019; Guo
et al., 2023; Liu et al., 2024), using classifiers based
on Roberta (Conneau et al., 2020) or T5 (Raffel

et al., 2020). However, these approaches are brittle
and their success depends on particular generator-
detector pairs (Antoun et al., 2024), prompting e.g.
Verma et al. (2024) to design automatic feature
extractors from multiple detectors to improve the
robustness of their system.

Zero-shot methods. Unsupervised detection is
more challenging. Most approaches rest on the
idea that human-written texts are more “surpris-
ing” than artificial texts2, leading to a difference in
token-wise log-probability3. This idea is used in
GPTzero4 and thresholding perplexity usually pro-
vides strong baselines (see, inter alia, (Gehrmann
et al., 2019; Ippolito et al., 2020; Mitchell et al.,
2023)). Such techniques heavily rely on the detec-
tor model(s) used to compute the log-probabilities
of input texts, which must be robust to variations
in domains, genres, styles, and languages (Wang
et al., 2024b); and to variations in the generator
itself (Antoun et al., 2024).

Perturbation-based. Mitchell et al. (2023) and
Bao et al. (2024) exploit a similar intuition, argu-
ing that small random perturbations of an artifi-
cial text will on average make it less likely, unlike
human-written texts. They develop a statistical cri-
terion based on the curvature of the log-probability
function and achieve near-perfect detection scores
across three types of texts generated by five differ-
ent models. The Binoculars score of Hans et al.
(2024) also relies on a function of the per-token
log-perplexity, contrasted with the cross-entropy of
an auxiliary model.

These valuable works point to the over-reliance
on one specific detector model as a major limi-
tation of the state-of-the-art. Our proposed miti-
gation relies on ensemble techniques, that are also
considered in the supervised detection setting, e.g.
in (Verma et al., 2024; Wang et al., 2023; El-Sayed
and Nasr, 2023; Liyanage and Buscaldi, 2023).

Other methods. Abandoning generator-detector
based techniques altogether, (Mao et al., 2024;
Yang et al., 2024) develop effective detection ap-
proaches based on regeneration, prompting the
(known) generator to regenerate part of the in-
put text. The intuition is that artificial inputs are
likely to be regenerated exactly, unlike human

2Assuming generation does not use random sampling, in
which case the reverse is likely to be observed, as long artificial
texts drift away from natural writings (Zellers et al., 2019).

3(Mitchell et al., 2023) argues that the difference is better
seen at the level of log-ranks.

4https://gptzero.me/
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texts. Other strategies include text watermark-
ing (Kirchenbauer et al., 2023, 2024; Liu and Bu,
2024), though its efficiency and robustness are still
subject to discussions, e.g., (Zhang et al., 2024).

Robustness issues. Recent works focus on
detection robustness. (Wang et al., 2024a) find
that after simple modifications, only watermark-
ing remains able to accurately identify artificial
documents. Dugan et al. (2024) present artificial
texts generated with multiple models and sampling
strategies, additionally subject to various adversar-
ial attacks, observing that most detectors suffer
large drops in performance, and Binoculars (Hans
et al., 2024) stands out, achieving decent True Pos-
itive Rates at False Positive Rates under 1%.

3 Detecting AI-Generated Text with
Multiple Models

3.1 Background

We consider models for language generation tasks
that define a probability distribution over strings.
Formally, language models are probability distri-
butions over an output space Y which contains all
possible strings over vocabulary Ω: Y ≜

{
BOS ◦

y◦EOS |y ∈ Ω∗}, BOS and EOS denote respectively
the beginning-of-sequence and end-of-sequence to-
kens, and Ω∗ is the Kleene closure of Ω.

Today’s models for language generation are typ-
ically parameterized with trainable weights θ ∈ Θ.
These models follow a local-normalization scheme,
meaning that ∀ t > 0, pθ(·|y<t, ) defines a condi-
tional probability distribution over Ω̄ = Ω ∪ EOS.
The probability of a sequence y = ⟨y0, . . . , yT ⟩ is:

p(y) =

T∏
t=1

pθ(yt|y<t) (1)

y<t = ⟨y0, . . . , yt−1⟩, y0 = BOS and yT = EOS.
Measuring information. A fundamental rela-

tionship in information theory relates the probabil-
ity of a message and the quantity of information it
carries, using the relationship (Cover and Thomas,
2006): information = − log(probability), assum-
ing the use of coding techniques such as Huffman
and Arithmetic codes (Shields, 1996) which allow
to achieve message lengths closely approximating
this ideal length in binary digits.

Explanations of data. Given a body of text
represented in a finite string y<t = ⟨y0, . . . , yt−1⟩,
an “explanation” of this next token yt is a binary
string encoding the symbol with minimum length

Lp(yt|y<t) ≜ − log p(yt|y<t). Lp(yt|y<t) is also
often referred to as the model’s surprisal (Samson,
1953) on input yt. Its expected value is termed the
conditional entropy:

Hp(Yt|y<t) =
∑
yt∈Ω

p(yt|y<t)Lp(yt|y<t).

Finally, another important concept is the condi-
tional mutual information (MI) between two ran-
dom variables M and Yt, given a sequence value
y<t, defined as (Cover and Thomas, 2006):

Ip(M;Yt|y<t) = Hp(Yt|y<t)−Hp(Yt|M,y<t),

Hp(Yt|M,y<t) = E
m∼µ(m|y<t)

Hp(Yt|m,y<t).

Conditional MI captures the amount of information
we get about M when observing Yt, and already
knowing y<t.

3.2 Multi-model Detection Methods
When detecting machine-generated texts in a zero-
shot setting, the most promising methods rely on
a language model (Guo et al., 2023). These tech-
niques are becoming less effective as LLMs’ capa-
bilities improve over time. The results of FastDe-
tectGPT and Binoculars suggest that detection can
be significantly improved by simultaneously using
two models: in their study, detection scores are
obtained by comparing a model’s surprisal against
the cross-entropy with respect to the other model,
averaged over the input tokens.

Here, we explore a key question: how can we
leverage multiple models for improved detec-
tion? A straightforward approach is to system-
atically search for the best model pair, achieving
optimal detection scores, as reported in Table 3
p.15 in (Hans et al., 2024) and Table 7 p.19 in (Bao
et al., 2024). However, this method lacks robust-
ness, as the best-performing model pair may vary
depending on the validation dataset used for selec-
tion, leading to performance fluctuations when the
test domain or language changes. Additionally, this
approach may struggle to scale to larger model en-
sembles due to the exponential increase in possible
model combinations that must be explored.

Before addressing our main question, we revisit
and reformulate Binoculars and FastDetectGPT5

using the previously introduced concepts, we ex-
plore potential variations and extensions.

5We focus on Binoculars here, while the analysis of Fast-
DetectGPT is provided in Appendix A.



Algorithm 1 MOSAIC Scoring

1: Input: text y = ⟨y0, y1, . . .⟩, LLMs m ∈M, with m⋆ the reference model
2: for yt in y do
3: µ⋆(m|y<t)← Blahut–Arimoto (PM(Y);y<t) ▷ Obtain the µ⋆ weights
4: q⋆(yt|y<t)←

∑
m∈M

µ⋆(m|y<t)pm(yt|y<t) ▷ Build the mixture

5: st(y)← Lq⋆(yt|y<t)−
∑
y∈Ω

pm⋆(y | y<t)Lq⋆(y | y<t) ▷ Compare surprisal and cross-entropy

6: end for
7: SM(y)← 1

T

∑
t st(y) ▷ MOSAIC score for the whole text

3.3 Revisiting the Binoculars Method

The Binoculars score Bp,q(y) for an input sequence
y = ⟨y0, y1, . . .⟩, using two language models q and
p expressed as in (1), is defined by :

Bp,q(y) ≜

∑T
t=1

∑
y∈Ω 1[y = yt]Lq(yt|y<t)∑T

t=1

∑
y∈Ω p(y|y<t)Lq(y|y<t)

,

(2)
with Lq(yt|y<t) = − log q(yt|y<t), and p(y|y<t)
and q(y|y<t) represent the probabilities assigned
by models p and q, respectively, to token y condi-
tioned on the current context y<t. It is important to
note that Eq. (2) is only valid when q and p share
the same underlying vocabulary and tokenizer.

From an information theory perspective, we can
interpret the numerator as the shorter average en-
coding length of the observed text according to
model q, while the denominator represents the en-
coding length if the text were generated by sam-
pling from model p instead. For this reason, in all
that follows, we call p the reference model.

Interestingly, it is easy to see that FastDetect-
GPT leverages the same concept but calculates a
difference rather than a ratio. While equivalent, it
normalizes the score for each token instead of aver-
aging it over the entire sentence (see Appendix A).

How to choose the most promising reference
model? Both scoring methods are based on the
intuition that the numerator—the log-probability
of the text—tends to be smaller for machine-
generated texts compared to natural ones. To en-
hance these distinctions, they also rely on the idea
that, conversely, the denominator term should be
smaller for artificial texts. This hints at the fact
that when having a family of models PM(Y) =
{pm(y) : m ∈M}, given a human sample of text
yhum, we can use the following criterion:

m⋆(yhum) ≜ argmin
m∈M

−
T∑
t=1

log pm(yt|y<t). (3)

In other words, the reference model pm⋆ needs to
be the model in the ensemble PM(Y) with the
lowest log-perplexity for human samples of text y.
This often turns out to be the largest LLM in the
ensemble, which is consistent with the tables in the
original papers (Bao et al., 2024; Hans et al., 2024)
and confirmed experimentally in Section 6.3.

The methodology introduced in (3) enables us
to select the most promising reference model, pm⋆ ,
from a given family of available models PM(Y).
However, it does not provide a practical criterion
for selecting the best model q needed to evaluate
(2). This will be addressed in the next section.

4 Introducing MOSAIC

Building on the principles used in previous sys-
tems, we now present MOSAIC, a scoring method
designed to leverage multiple models simultane-
ously. The key difference compared to previous
approaches is that instead of using a single fixed
LLM for q, MOSAIC defines it as a position-
dependent mixture of all models in the ensemble.
The weights of this mixture are formally defined in
the next proposition and depicted in Figure 2.

(Language Model 1)

q⋆(y)

pθ(y|1)

pθ(y|2)

Logits 1

pθ(y|M)

Text Σ

(Language Model 2)

(Language Model M)

Logits 2

Logits M µM

µ2

µ1

(Mixture Model)

Figure 2: Mixture model, where {µi} denote the time-
varying weights associated to LLMs in the mixture.

Proposition 1 (Optimal model). The optimal
model, q⋆—which minimizes the encoding length
for tokens—is the position-dependent mixture:

q⋆(yt|y<t) ≜
∑
m∈M

µ⋆(m|y<t)pm(yt|y<t), (4)



chatgpt cohere-c cohere gpt2 gpt3 gpt4 llama-c mistral-c mistral mpt-c mpt

Bino (best) 0.996 0.986 0.986 0.935 0.999 0.969 1.000 0.999 0.953 0.997 0.976
Config. 7b/7b-i 40b/7b-i 40b/7b-i 7b/7b-i 40b/7b-i 40b/40b-i 7b/7b-i 40b/7b-i 40b/7b-i 7b/7b-i 40b/7b-i
Bino (min) 0.650 0.671 0.606 0.207 0.871 0.293 0.826 0.668 0.436 0.698 0.473
Bino (avg) 0.893 0.894 0.874 0.616 0.971 0.675 0.967 0.925 0.755 0.935 0.795
Fast (best) 0.996 0.977 0.982 0.947 0.996 0.972 1.000 0.998 0.954 0.995 0.985
Config. 40b/40b-i 40b/7b-i 40b/7b-i 7b/7b-i 40b/40b-i 40b/40b-i 40b/40b-i 40b/7b-i 40b/7b-i 40b/40b-i 40b/7b-i
Fast (min) 0.512 0.433 0.504 0.366 0.477 0.343 0.693 0.438 0.522 0.360 0.641
Fast (avg) 0.848 0.816 0.834 0.680 0.859 0.681 0.932 0.850 0.781 0.826 0.853

Table 1: Summary of Bino(culars) & Fast(DetectGPT) AUROC on RAID with the Falcon family. Best, avg and min
cells respectively report the best, average and worst score among all configurations.“-i” and “-c” respectively denote
the instruct and chat version of the model.

chatgpt cohere-c cohere gpt2 gpt3 gpt4 llama-c mistral-c mistral mpt-c mpt

Bino (best) 0.996 0.985 0.979 0.812 0.999 0.969 1.000 0.998 0.915 0.999 0.946
Config. T13b/L-c L/L-c T13b/L-c T13b/T7b T13b/L-c T13b/L-c L/L-c T13b/L-c T13b/T7b T7b/L-c T13b/T7b
Bino (min) 0.511 0.688 0.711 0.459 0.945 0.376 0.741 0.560 0.609 0.661 0.637
Bino (avg) 0.837 0.900 0.870 0.652 0.983 0.720 0.928 0.876 0.774 0.895 0.798
Fast (best) 0.994 0.981 0.979 0.858 0.996 0.974 1.000 0.993 0.923 0.995 0.966
Config. T13b/L-c L/L-c L/L-c T7b/L L/L-c T13b/L-c L/L-c T13b/L-c T13b/L-c T13b/T7b L/L-c
Fast (min) 0.505 0.673 0.705 0.501 0.914 0.363 0.740 0.552 0.606 0.647 0.636
Fast (avg) 0.802 0.853 0.860 0.684 0.961 0.691 0.918 0.869 0.796 0.866 0.830

Table 2: Summary of Bino(culars) & Fast(DetectGPT) AUROC on RAID with Llama and Tower models. Best,
avg, and min cells report respectively the max, average and worst score among all configurations. “T” and “L”
respectively stand for TowerBase and Llama-2-7b, while “-c” denotes the “chat” version.

where the distribution µ⋆(·|y<t) of the random
variable M over LLM indices inM satisfies:

µ⋆(·|y<t) ≜ argmax
µ∈P(Ω)

Ip
(
M;Yt|y<t

)
. (5)

Furthermore, the weights {µ⋆(m|y<t)}m∈M de-
pend on the prefix y<t; they can be efficiently com-
puted using the well-known Blahut–Arimoto algo-
rithm (Arimoto, 1972; Blahut, 1972).

Definition 1 (MOSAIC Score). For an input sen-
tence y = ⟨y0, y1, . . .⟩, and models indexed by
M = {1, . . . ,M} sharing a common tokenizer,
the MOSAIC score is then defined as:

Sm⋆,M(y) ≜
1

T

T∑
t=1

∑
y∈Ω

[
1{y=yt}Lq⋆(yt | y<t)︸ ︷︷ ︸

(codelength for observed token)

− pm⋆(yt | y<t)Lq⋆(yt | y<t)︸ ︷︷ ︸
(codelength for generated token from model m)

]
(6)

where Lq⋆(yt|y<t) = − log q⋆(yt|y<t) and m⋆ is
the reference model (3) with lowest perplexity on
human texts. This formulation highlights the sim-
ilarity between MOSAIC and Binoculars scores,
differing only in how they compute average sur-
prisal: a fixed model for Binoculars vs. a position-
dependent mixture for MOSAIC. This score is used

to detect artificial texts as follows: given an appro-
priate threshold δ > 0 and a sample text y, if
Sm⋆,M(y) ≥ δ, the text is classified as human;
otherwise, it is considered AI-generated.

A formal description of how this scoring system
is implemented is provided in Algorithm 1.

5 Experimental Settings

5.1 Datasets & Metrics

Human Artificial
Corpus Name # Gen # texts avg len # texts avg len
RAID (sampling) 11 1k 452 11k 373
RAID adversarial 11 1k 452 11k 658
RAID+ 2 1k 452 2k 410
M4 (Multilingual) 1 15k 729 15k 649

Table 3: Dataset details: RAID+ was specifically gener-
ated for this study using the models considered in our
ensembling experiments. # Gen indicates the numbers
of generators used for the artificial texts, avg len repre-
sents the average length of texts in Llama-2 tokens.

We evaluate our method on a diverse set of texts
and generative models from the literature: RAID
(Dugan et al., 2024) and M4 (Wang et al., 2024b).

RAID contains about 15k natural texts in En-
glish from a variety of domains; the artificial part
version contains approximately 500k, generated
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Figure 3: Comparing MOSAIC AUROC on the RAID dataset with different methods using the Falcon family (top
plot) and Llama and Tower models (bottom plot). Model names represent the LLM used to generate the dataset.

with a diverse set of recent models, also varying the
sampling procedure. As the test set is not publicly
released, we select a random subset of 1,000 human
texts and their generated counterparts with 11 dif-
ferent models and ancestral sampling for our exper-
iments. RAID also includes an artificially noised
subcorpus, we report the results for the different
adversarial attacks in Table 9 in the Appendix.

The M46 corpus is a massive dataset of natu-
ral texts collected from a diverse set of sources
(Wang et al., 2024b). Comparable artificial texts
are generated by 6 LLMs, with prompts such
as article titles, headlines, or abstracts depend-
ing on their domain. In our experiments, we
only use one multilingual generator (ChatGPT,
https://chatgpt.com/), and the “balanced” sets
made of 3,000 pairs of (artificial, natural) texts in
Chinese, Russian, Bulgarian, Arabic, and German.

We augmented the RAID extracts with texts gen-
erated using models that are in our ensembles,7 us-
ing the same prompts as in the RAID dataset. We
refer to this augmented RAID as RAID+.

These datasets, presented in Table 3, represent
a large variety of genres, themes, languages, sam-
pling strategies, and generators, allowing us to thor-
oughly assess our detection strategy in different
settings. Using RAID+, we can also evaluate de-
tection performance for texts produced by one of

6For Multi-Lingual, Multi-Domain, Multi-Generator
Machine-Generated text.

7Generation uses ancestral sampling.

our detectors.

Metrics. As in most studies, we report the AU-
ROC score as our main evaluation metric. Depend-
ing on the application, True Positive Rate (TPR) for
a predefined False Positive rate (e.g., 5%) is also
worth looking at and reported. All these scores are
obtained using scikit-learn (Pedregosa et al., 2011).

5.2 Choice of Models

In the next experiments, we use two ensembles of
four models each, sharing a common vocabulary
(65k for Falcon, 32k for Llama-2):

• The Falcon family (Almazrouei et al., 2023)
(Falcon-7b, Falcon-7b-instruct, Falcon-40b,
Falcon-40b-instruct).

• Llama (Touvron et al., 2023) model variations
(Llama-2-7b, Llama-2-7b-chat, TowerBase-
7b and TowerBase-13b (Alves et al., 2024)).

Both ensembles contain LLMs used in the original
Binoculars paper, to which we added models to
deepen the analysis of our ensembling techniques.
We only consider pairs or ensembles of models
within one group, as computing the cross-entropy
term in equations (2) and (6) requires models to
share the same tokenizer.

https://chatgpt.com/


AUROC chatgpt cohere-c cohere gpt2 gpt3 gpt4 llama-c mistral-c mistral mpt-c mpt
MOSAIC-2 0.928 0.978 0.968 0.803 0.994 0.902 0.998 0.970 0.895 0.990 0.920
MOSAIC-3 (i) 0.917 0.978 0.971 0.818 0.994 0.898 0.996 0.969 0.903 0.988 0.925
MOSAIC-3 (ii) 0.972 0.980 0.979 0.802 0.997 0.956 0.998 0.987 0.909 0.994 0.922
MOSAIC-4 0.970 0.979 0.980 0.815 0.997 0.955 0.998 0.988 0.914 0.994 0.927
TPR@5%FPR chatgpt cohere-c cohere gpt2 gpt3 gpt4 llama-c mistral-c mistral mpt-c mpt
MOSAIC-2 0.674 0.923 0.893 0.365 0.984 0.636 0.999 0.881 0.577 0.960 0.643
MOSAIC-3 (i) 0.629 0.922 0.904 0.377 0.984 0.610 0.998 0.871 0.584 0.948 0.644
MOSAIC-3 (ii) 0.844 0.937 0.924 0.314 0.990 0.769 1.000 0.938 0.546 0.978 0.586
MOSAIC-4 0.831 0.936 0.928 0.351 0.991 0.771 1.000 0.943 0.568 0.976 0.624

Table 4: Performance of MOSAIC on the RAID dataset with a varying number of underlying models. “-c” indicates
the chat version of a model. 2 models: Llama-2-7b and its chat version, 3 models (i): both Llama+ TowerBase-7B,
3 models (ii): both Llama+ TowerBase-13B, 4 models: all 4 Llama and Tower models.

6 Experimental Results

6.1 Results on RAID

In Table 1, we perform a systematic search to fig-
ure out the “best” performing configuration for
each generator model used in RAID, that we call
“Oracle” in Figure 3. The optimal model selec-
tion varies by dataset, making it incompatible with
a “generator-agnostic” approach. As the average
Binoculars and FastDetectGPT scores across com-
binations indicate, most settings yield poor perfor-
mance, highlighting the need for a robust criterion
to identify effective model combinations.

In Figure 3, we observe that MOSAIC performs
as well as the other methods’ oracle configu-
rations, with the exception of GPT2 generations.
This can be explained by the poorer quality of the
outputs, increasing the surprisal of artificial texts,
thus misleading the detectors. The poor average
performance across all combinations on the data
generated by this smaller model supports this argu-
ment. In contrast, most static two-model combina-
tions struggle to detect GPT4 accurately. However,
since GPT4’s outputs are of very high quality, MO-
SAIC remains effective in identifying them.

6.1.1 Augmenting the Ensemble

To demonstrate the effectiveness of ensembling, we
showcase the results of MOSAIC using 2, 3 and 4
models. We first look at the results of the Llama-2-
7b and Llama-2-7b-chat pair, then add TowerBase-
7B-v0.1, then TowerBase-13B-v0.1. Following our
criterion of “lowest surprisal over the human texts”
defined in Section 3.3, the model used to compute
conditional entropy for the 2 and 3 model setting is
Llama-2-7b, and TowerBase-13B-v0.1 is used for
the 4-model setting.

In Table 4, we see that adding the “best” model,
TowerBase-13B, leads to improved performances,
with the exception of “mistral” and “mpt” gener-
ations. Adding the 7B version of Tower does not
change much the results of our method, probably
because its capabilities in English are similar to
those of the already available Llama models. Aug-
menting the ensemble seems to have the least effect
when the generator model is small, as GPT2, Mis-
tral and MPT are the ones showing few improve-
ments when adding models, even worsening results
at times.

6.2 Including the Generator in the Ensemble

With our 1,000 human samples of RAID and the
prompts used, we generated 1,000 texts using an-
cestral sampling with both Falcon-40b and Llama-
2-7b, then used MOSAIC with respectively the
Falcon and the Llama families. MOSAIC with
Falcon models obtains an AUC of 0.965 for the
text generated by Falcon-40b, and MOSAIC with
the Llama and Tower models obtains an AUC of
0.986 for the texts generated by Llama-2-7b. These
results are good but surprisingly average for the
methods, suggesting that the size of the generator
and the quality of its outputs matter more than its
usage as a detector. In our setting, having the gen-
erator in the ensemble does not appear particularly
advantageous.

6.3 Choosing the Best “Reference” Model

As mentioned in Section 3.3, the model m used to
compute the conditional entropy needs to be the
one with the least surprisal when looking at human
texts. When having a family of models available,
the one with the most parameters often ends up
being better at this task and becomes the obvious



choice. However, we purposely chose the Tower
models for their multilingual capabilities, despite a
number of parameters similar to the Llama models.
Table 5 reports the log-perplexities of these models
on the “human” parts of the M4 dataset. Table 6
then gives us the performance of MOSAIC when
using different m models to compute the condi-
tional entropy. Our heuristic of selecting the refer-
ence model based on its low perplexity on human
texts (see Section 3.3) consistently gives the best
results. This simple criterion only requires human
development texts; if unavailable, the largest model
in the ensemble can serve as a good proxy.

Arabic Bulgarian Chinese German Russian
TowerBase-13B 1.2743 1.8052 2.3047 1.4912 1.5069
TowerBase-7B 1.3929 1.9839 2.3527 1.6169 1.6084
Llama-2-7b-chat 1.7379 2.3175 2.6800 2.1189 2.2917
Llama-2-7b 1.3506 1.8291 2.1286 1.6117 1.7778

Table 5: Log-perplexity values of our models for the
“human” texts in M4

Model m Arabic Bulgarian Chinese German Russian
TowerBase-13B 0.9563 0.9888 0.9752 0.9311 0.9148
TowerBase-7B 0.9111 0.9578 0.9558 0.8679 0.8569
Llama-2-7b-chat 0.7768 0.8262 0.5849 0.6751 0.4321
Llama-2-7b 0.8947 0.9762 0.9059 0.9200 0.6814

Table 6: AUROC of MOSAIC on the M4 dataset when
varying the “reference” model m⋆.

6.4 Using Multiple Variants of a Single Model

A lighter and faster implementation of MOSAIC
can be developed based on one single model, the
logits of which are modified in order to simulate
several probability distributions, that can then be
ensembled. In fact, many generation techniques
are based on the adaptation of the distribution of
an underlying model (Meister et al., 2023), such
as top-k sampling (Fan et al., 2018), top-p or nu-
cleus sampling (Holtzman et al., 2020), η-sampling
(Hewitt et al., 2022), etc. Using such techniques in
MOSAIC only requires to load in memory and per-
form inference with just one model; it also readily
satisfies the constraint that all distributions in the
ensemble should share a common vocabulary.

We explored this with Llama-2-7b and four dif-
ferent values of nucleus sampling.8 Results are re-
ported in the Appendix (Table 8). This choice leads

8In our implementation, we use a smoothed version of the
adapted distribution, so that all tokens have a small probability
to be sampled. Having the same support for all distributions is
required to compute the cross-entropy term in Eq. (6).

to results that are weaker than the 2-models setting
depicted in Table 4, suggesting that applying this
top-p in four different ways does not introduce as
much diversity as the instruct model does. Another
downfall of this approach is that the selection of
m, the “reference model”, can no longer rely on
perplexity scores, as these cannot be reliably com-
puted when with truncated vocabularies. In our
experiment, we thus experimented with all poten-
tial values. Further work is needed to draw more
precise analyses of this use-case.

6.5 Robustness Issues
Using the same 1000 human samples of RAID
considered in all our previous experiments, we ran-
domly sampled 1000 artificially generated texts for
each adversarial attack available in RAID. Perfor-
mance on this “noised” test set are in Table 9 in
the Appendix. MOSAIC (with Llama and Tower)
is quite resilient to such modifications, with the
exception of “synonym” and “zero-width space”
attacks, which significantly deteriorate the perfor-
mance of the method due to the large change in
surprisal they induce in the generated texts.

6.6 Uniform Ensembling
Instead of using the Blahut-Arimoto algorithm
for optimal model combination, we naively as-
signed equal weights to each model in the ensem-
ble. These results are reported in Table 7 on row
“MOSAIC (uniform Falcon)”. We observe that this
uniform mixture yields good overall results; yet, it
still underperforms our theory-driven ensembling
method for every generator in the RAID dataset.

7 Conclusion

Through all of our experiments, we have shown
that the MOSAIC method effectively combines
all the models in the ensemble, achieving very
strong results across all datasets and languages.
This method has multiple advantages: it is fully
unsupervised, dispenses with the search for the op-
timal detector(s) when several are available, while
offering a scalable solution that can incorporate
a growing number of models. Even adversarial
attacks have only a minimal effect on the perfor-
mance, despite our scoring system not being op-
timized for perturbations. However, MOSAIC is
currently computationally costly, as each model
must run on the input text.

While not in the main scope on this paper, a
potential improvement of computational efficiency



is proposed in Section 6.4, and further solutions
are discussed in Appendix E. Furthermore, more
work needs to be done in order to fully understand
how to evaluate the “distance” in-between models’
outputs, in order to choose the best ensemble that
would cover all potential generations.

The optimal mixture in MOSAIC, defined by
Blahut-Arimoto weights to minimize encoding
length in worst-case scenarios, could be useful be-
yond detecting machine-generated texts. We leave
this exploration for future work.

8 Limitations

As mentioned above, the computational cost of
the method, running multiple LLMs as well as the
Blahut-Arimoto algorithm for each token is cur-
rently an issue, being able to analyse the 1000 texts
of each RAID sub-dataset with 4 models in about
an hour on one A100 GPU if using the Llama and
Tower models, and three if using the Falcon ones.
Theory-wise, the main issue with our method is
the need to compute the cross-entropy between
models, forcing them to have the same vocabulary,
thus greatly limiting the number of models we can
combine at once.

9 Ethical Considerations

It should be acknowledged that artificial text de-
tection tools are not infallible and consequently
should not be used as the sole basis for punitive
actions or decisions that could affect individuals
or organizations. These methods must be comple-
mented by human oversight and verification before
taking any drastic measure, to ensure fairness of
treatment.
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A Information-Theoretic Principles
Behind FastDetectGPT and Binoculars

As discussed in Section 3.3, FastDetectGPT closely
resembles Binoculars. However, rather than di-
rectly computing the cross-entropy between two
models, it draws N independent samples from the
model and computes the empirical cross-entropy:
{ỹi ∼ p(Yt|y<t)}Ni=1 and then return the score:

SFast
p,q (y) =

− log q(yt|y<t) +
1
N

N∑
i=1

log q(ỹi|y<t)

σ̃(y<t)
,

where

σ̃2(y<t) ≜
1

N − 1

N∑
i=1

(
− log q(yi|y<t)

+
1

N

N∑
j=1

log q(yj |y<t)
)2

(7)

is a normalisation term which is particularly useful
for individual token detection.

B Theoretical Grounding of MOSAIC

Identifying explanations of data. We turn to the
problem of determining an adequate sequence of
models m̂ = ⟨m̂0, . . . , m̂T ⟩.

Our goal will be to derive a robust scoring al-
gorithm that best extracts regularity in the data,
which is equivalent to identifying the model that
achieves the best compression of the input to-
kens. Suppose we are given a family of LLMs
PM(Y), with corresponding Shannon codelengths:

Lpm(yt|y<t) ≜ − log pm(yt|y<t),

for each yt. These can be viewed as a collection of
data compressors, indexed by m. We can measure
the performance of encoding yt at time t relative
to PM(Y). If we choose to encode the token yt
with model q(yt|y<t), the resulting expected ex-
cess codelength (or overhead) w.r.t. any distribu-
tion pm ∈ PM(Y) is:

Rm(q ;y<t) ≜ E
yt∼pm(yt|y<t)

[
− log q(yt|y<t)

]
−Hpm(Yt|y<t)

which is non-negative since Hpm(Yt|y<t) is the
minimum expected codelength. Rm represents the
extra averaged number of bits needed to encode

yt using the code/LLM q(yt|y<t), as compared
to Hpm(Yt|y<t), the number of bits needed if we
would have used the best fitting LLM in PM(Y)
with hindsight. However, the encoder cannot know
the underlying model artificially generating yt so
we take a worst-case approach and look for univer-
sal LLMs with small worst-case expected overhead,
where the worst-case is over all models in PM(Y).
Rm is our quality measure and hence, the ‘optimal’
LLM relative to PM(Y), for a given context y<t,
is the distribution minimizing:

q⋆(yt|y<t) ≜ argmin
q∈P(Ω)

max
m∈M

Rm(q ;y<t) (8)

where the minimum is over all distributions on Ω.
The minimizer corresponds to the code with the
smallest overhead (i.e., the fewest extra bits) rela-
tive to the optimal code, which is retrospectively
the best choice in the worst-case model selection
for generating synthetic text across all LLMs in the
available family PM(Y).

Leveraging codelengths for identifying AI-
generated text. The averaged overhead of the opti-
mal codelength − log q⋆(yt|y<t) obtained by solv-
ing Eq. (8) seems to be a very reasonable choice
for building a robust score function to detect AI-
generated text because of the following properties:

• The better the best-fitting LLM in PM(Y) fits
the artificially generated data, the shorter the
codelengh Lq⋆(yt|y<t) ≜ − log q⋆(yt|y<t).

• No LLM in PM(Y) is given a prior prefer-
ence over any other since Rm(q⋆ ;y<t) ≤
Rm(p ;y<t) for all p ∈ PM(Y), i.e., we are
treating all LLMs within our universe PM(Y)
on the same footing.

B.1 Proof of Proposition 1
Proof. We need to show the fundamental identity:

Γ(y<t) ≜ min
q∈P(Ω)

max
m∈M

Rm(q ;y<t) (9)

= max
µ∈P(M)

I(M;Yt|y<t), (10)

where the optimal q⋆(yt|y<t) achieving the mini-
mum is characterized by the mixture:

q⋆(yt|y<t) =
∑
m∈M

µ⋆(m|y<t)pm(yt|y<t) (11)

and the distribution µ⋆(m|y<t) of the random vari-
able M onM follows by solving:

µ⋆(m|y<t) ≜ argmax
µ∈P(Ω)

I
(
M;Yt|y<t

)
. (12)



To this end, we start from the definitionRm:

Rm(q ;y<t) ≜ E
yt∼pm(yt|y<t)

[− log q(yt|y<t)]

− min
q′∈P(Ω)

E
yt∼pm(yt|y<t)

[
− log q′(yt|y<t)

]
= E

yt∼pm(yt|y<t)
[− log q(yt|y<t)]−Hpm(Yt|y<t)

= DKL

(
pm(·|y<t)

∥∥q(·|y<t)
)
, (13)

where DKL(·∥·) denotes the Kullback–Leibler di-
vergence. Hence, we can formally state our prob-
lem as follows:

Γ(y<t) = min
q∈P(Ω)

max
m∈M

Rm(q ;y<t)

= min
q∈P(Ω)

max
m∈M

DKL

(
pm(·|y<t)

∥∥q(·|y<t)
)

= min
q∈P(Ω)

max
µ∈P(M)

E
m∼µ
DKL

(
pm(·|y<t)

∥∥q(·|y<t)
)
,

(14)

where the minimum is taken over all the possible
distributions q ∈ P(Ω), representing the expected
value of regret of q w.r.t. the worst-case distribution
over µ ∈ P(M). Notice that this is equivalent to
the average worst-case regret (Barron et al., 1998;
Silva and Piantanida, 2022). The equality in (14)
holds by noticing that

max
µ∈P(M)

E
m∼µ
DKL

(
pm(·|y<t)

∥∥q(·|y<t)
)

≤ max
m∈M

DKL

(
pm(·|y<t)

∥∥q(·|y<t)
)

(15)

and moreover,

max
m∈M

DKL

(
pm(·|y<t)

∥∥q(·|y<t)
)

= E
m∼µ̃
DKL

(
pm(·|y<t)

∥∥q(·|y<t)
)

(16)

by choosing the measure µ̃ to be an uniform prob-
ability over the set M̃ ⊆ M, which is defined as
the set of maximizers:

M̃ ≡ argmax
m∈M

DKL

(
pm(·|y<t)

∥∥q(·|y<t)
)

and zero otherwise.
The convexity of the KL-divergence allows us

to rewrite expression (14) as follows:

min
q∈P(Ω)

max
µ∈P(M)

E
m∼µ
DKL

(
pm(·|y<t)

∥∥q(·|y<t)
)

= max
µ∈P(M)

min
q∈P(Ω)

E
m∼µ
DKL

(
pθ(·|y<t)

∥∥q(·|y<t)
)

(17)

This follows by considering a zero-sum game with
a concave-convex mapping defined on a product
of convex sets. The sets of all probability distribu-
tions P(M) and P(Ω) are two nonempty convex
sets, bounded and finite-dimensional. On the other
hand, (µ, q)→ E

m∼µ
DKL

(
pm(·|y<t)

∥∥q(·|y<t)
)

is

a concave-convex mapping, i.e.,

µ→ E
m∼µ
DKL

(
pm(·|y<t)

∥∥q(·|y<t)
)

is concave and,

q → E
m∼µ
DKL

(
pm(·|y<t)

∥∥q(·|y<t)
)

is convex for every (µ, q), respectively. Then, by
classical min-max theorem (von Neumann, 1928),
we have that (17) holds.

Finally, it remains to show that:

min
q∈P(Ω)

E
m∼µ
DKL

(
pm(·|y<t)

∥∥q(·|y<t)
)

= I(M;Yt|y<t) (18)

for any random variable M distributed according
to the probability distribution µ ∈ P(M) and each
distribution pm(yt|y<t).

We begin by showing that:

E
m∼µ
DKL

(
pm(·|y<t)

∥∥q(·|y<t)
)
≥ I(M;Yt|y<t)

for all distributions q(·|y<t) and pm(yt|y<t). To
this end, we consider the following identities:

E
m∼µ
DKL

(
pm(·|y<t)

∥∥q(·|y<t)
)

= E
m∼µ
DKL

(
pm(·|y<t)

∥∥pm(·|y<t)
)

+DKL

(
pm(·|y<t)

∥∥q(·|y<t)
)

= I(M;Yt|y<t) +DKL

(
pm(·|y<t)

∥∥q(·|y<t)
)

≥ I(M;Yt|y<t), (19)

where pm(·|y<t) denotes the marginal distribution
of pm(·|y<t) w.r.t. µ and the last inequality follows
since the KL divergence is non-negative. Finally, it
is easy to check that by selecting:

q⋆(yt|y<t) = E
m∼µ

[
pm(yt|y<t)

]
(20)

the lower bound in (19) is achieved:

min
q∈P(Ω)

E
m∼µ
DKL

(
pm(·|y<t)

∥∥q(·|y<t)
)

(21)

= E
m∼µ
DKL

(
pm(·|y<t)

∥∥q⋆(·|y<t)
)

(22)



for every µ ∈ P(M), which proves the identity in
expression (18).

The claim in (10) follows by taking the maxi-
mum overall probability measures µ ∈ P(M) at
both sides of (18), and combining the resulting
identity with expressions (17) and (14). The mix-
ture in (12) follows from expression (20) which is
a necessary condition to solve the min-max prob-
lem.

C Blahut–Arimoto Algorithm

C.1 Algorithm
Our channel can be specified using two discrete
random variables (M, Yt) with alphabets (M,Ω)
and probability distributions µ and pm(yt|y<t), re-
spectively, conditioned on y<t. The problem to be
solved is the maximization of the mutual informa-
tion, which consists in:

Γ(y<t) ≜ max
µ∈P(M)

Im
(
M;Yt|y<t

)
. (23)

Now if we denote the cardinality |M| = M ,
|Ω| = N , then pm(yt|y<t) is an M × N matrix,
which we denote the i-th row, j-th column entry
by wij . For the case of channel capacity, the algo-
rithm was introduced in (Blahut, 1972; Arimoto,
1972) to solve (23). They both found the following
expression for the capacity of a discrete channel
with channel law wij :

Γ(y<t) = max
µ

max
Q

M∑
i=1

N∑
j=1

µiwij log

(
qji
µi

)
,

where µ and Q are maximized over the following
requirements:

• µ ≜ (µ1, . . . , µM ) is a probability distribu-
tion onM. That is,

∑M
i=1 µi = 1.

• Q = (qji) is an N ×M matrix that behaves
like a transition matrix from Ω to M with
respect to the channel law. That is, for all
1 ≤ i ≤M , 1 ≤ j ≤ N :

qji ≥ 0, qji = 0⇔ wij = 0,

and every row sums up to 1:
∑M

i=1 qji = 1.

Then, upon initializing a probability measure µ0 =
(µ0

1, µ
0
2, . . . , µ

0
M ) on M, we can generate a se-

quence (µ0, Q0, µ1, Q1, . . .) iteratively as follows:

(qtji) =
µt
iwij

M∑
k=1

µt
kwkj

(24)

and

µt+1
k =

N∏
j=1

(qtjk)
wkj

M∑
i=1

N∏
j=1

(qtji)
wij

(25)

for t = 0, 1, 2, . . ..
Then, using the theory of optimization, specif-

ically coordinate descent, it has been shown that
the sequence indeed converges to the required max-
imum. That is,

lim
t→∞

M∑
i=1

N∑
j=1

µt
iwij log

(
qtji
µt
i

)
= Γ(y<t).

So given a channel law pm(yt|y<t), the (23) can
be numerically estimated up to arbitrary precision.

C.2 Computational complexity

The computational complexity of the Blahut-
Arimoto algorithm can be characterized as follows:

• Number of iterations. The algorithm typi-
cally converges linearly, so the number of iter-
ations required, denoted as T , is proportional
to the desired accuracy of the solution.

• Operations per iteration. Each iteration in-
volves updating the probability measures in
(24) and (25), and evaluating the mutual infor-
mation, which requires matrix manipulations.
Let M and N be the cardinalities of the input
and output alphabets, respectively. Each itera-
tion involves operations over all input-output
pairs, requiring O(M ×N) operations.

Combining these, the overall computational com-
plexity of the Blahut-Arimoto algorithm is O(T ×
n ×m), reflecting its dependence on the sizes of
M (number of LLMs in the considered family) and
N (the vocabulary), and the number of iterations
needed for convergence, which depends intrinsi-
cally on the underlying distributions.

D Complementary Results

This section is dedicated to additional results. Ta-
ble 7 shows the results of MOSAIC with both en-
semble of models on the RAID dataset, along with
the uniform mixture discussed in Section 6.6.

Table 8 reports the results of Section 6.4, us-
ing only one model but modifying its logits with



nucleus sampling in order to create different proba-
bility distributions.

Table 9 shows the performance of MOSAIC un-
der the different adversarial attacks available in the
RAID dataset.

E Complexity Improvements

Our algorithm currently processes each text in ap-
proximately 10 seconds on NVIDIA 32G V100
GPUs, and twice as fast on 80G A100 GPUs. Run-
time optimization is an area that should be im-
proved in future work. Below, we outline limi-
tations of our system and propose potential im-
provements : In MOSAIC, the texts are processed
one-by-one by the LLMs. Each model is loaded
onto a separate GPU, and the logits are moved to
a central device for performing operations such as
Blahut-Arimoto, perplexity, and cross-entropy cal-
culations, after which the final score is computed.
This setup has several inefficiencies. For instance,
transferring logits to a central device introduces a
significant bottleneck. Additionally, while calcu-
lations are performed on one GPU, the remaining
ones remain idle, resulting in suboptimal use of
resources.

A more efficient method would involve comput-
ing the logits for all texts in parallel, storing them
across different GPUs, and performing subsequent
calculations concurrently. An even more stream-
lined solution would involve loading all models
onto a single GPU using quantized or distilled ver-
sions, thus eliminating the need to transfer logits
across devices.

While these optimizations are promising, they
have not been implemented in this work, as we
focus on the algorithmic methodology rather than
runtime efficiency.

F A Systematic Study of all Potential
Combinations

Tables 10, 11, 12 and 13 display the whole study of
all the potential combinations of the four models
in our ensembles for every generator in the RAID
dataset.



AUROC chatgpt cohere-c cohere gpt2 gpt3 gpt4 llama-c mistral-c mistral mpt-c mpt
MOSAIC (Falcon family) 0.984 0.981 0.980 0.794 0.997 0.955 0.996 0.993 0.903 0.994 0.932
MOSAIC (uniform Falcon) 0.969 0.947 0.942 0.675 0.987 0.876 0.988 0.970 0.774 0.983 0.796
MOSAIC (Llama and Tower) 0.970 0.980 0.979 0.815 0.997 0.955 0.998 0.988 0.913 0.994 0.927

Table 7: Performance of MOSAIC on the RAID dataset with both families of models.

chatgpt cohere-chat cohere gpt2 gpt3 gpt4 llama-chat mistral-chat mistral mpt-chat mpt

p = 0.7 0.792 0.665 0.577 0.356 0.733 0.503 0.869 0.763 0.465 0.731 0.488
p = 0.8 0.789 0.665 0.577 0.354 0.732 0.502 0.867 0.760 0.462 0.731 0.485
p = 0.9 0.781 0.663 0.578 0.358 0.725 0.503 0.860 0.752 0.457 0.726 0.480
p = 0.95 0.764 0.656 0.573 0.370 0.711 0.497 0.848 0.736 0.456 0.713 0.476

Table 8: MOSAIC on RAID using Llama-2-7b with four different values of nucleus sampling, on the RAID dataset.
Each row corresponds to the chosen value of p computed as m, the “reference model”.

homoglyph number
article

deletion
insert

paragraphs
misspelling

upper
lower

whitespace
zero-width

space
synonym paraphrase

alternative
spelling

AUROC 0.961 0.936 0.920 0.952 0.948 0.928 0.927 0.754 0.681 0.944 0.947
TPR@5%FPR 0.749 0.736 0.693 0.785 0.771 0.699 0.707 0.007 0.315 0.752 0.771

Table 9: MOSAIC AUROC and TPR@5%FPR for the various attacks performed on RAID, the usual Llama and
Tower models were used in this scenario. For reference, MOSAIC obtains an average AUC of 0.956 over all
generators without adversarial attacks.

Method chatgpt cohere-chat cohere gpt2 gpt3 gpt4 llama-chat mistral-chat mistral mpt-chat mpt Average

Binoculars 0 1 0.99559 0.97838 0.97799 0.93460 0.99786 0.95868 0.99996 0.99919 0.91932 0.99733 0.95045 0.97358
FastDetectGPT 0 1 0.99487 0.96940 0.97366 0.94662 0.99375 0.96133 0.99922 0.99662 0.92746 0.99365 0.96846 0.97500
Binoculars 0 2 0.94267 0.87411 0.85786 0.38375 0.97858 0.68632 0.98387 0.92952 0.59812 0.95399 0.64461 0.80304
FastDetectGPT 0 2 0.86155 0.74420 0.77979 0.49724 0.82475 0.70021 0.94406 0.80315 0.64382 0.77470 0.75213 0.75687
Binoculars 0 3 0.98818 0.92769 0.90545 0.41349 0.98959 0.85435 0.99703 0.98274 0.66670 0.98825 0.69790 0.85558
FastDetectGPT 0 3 0.94627 0.82562 0.83573 0.52014 0.87708 0.82838 0.98374 0.91869 0.69212 0.89539 0.78809 0.82830
Binoculars 1 0 0.70925 0.79631 0.73389 0.49105 0.93632 0.35652 0.88678 0.83358 0.66604 0.82795 0.71482 0.72296
FastDetectGPT 1 0 0.61166 0.61442 0.64173 0.59703 0.68329 0.37331 0.82227 0.65597 0.68932 0.55185 0.80423 0.64046
Binoculars 1 2 0.65047 0.67101 0.60557 0.20704 0.87062 0.29262 0.82634 0.66793 0.43608 0.69845 0.47293 0.58173
FastDetectGPT 1 2 0.51206 0.43272 0.50416 0.36579 0.47719 0.34305 0.69285 0.43790 0.52221 0.35996 0.64190 0.48089
Binoculars 1 3 0.85179 0.76976 0.66409 0.22159 0.90261 0.44492 0.93861 0.85577 0.46290 0.88676 0.49854 0.68158
FastDetectGPT 1 3 0.64419 0.50397 0.52859 0.37228 0.49602 0.42459 0.76787 0.56583 0.52658 0.49533 0.64131 0.54241
Binoculars 2 0 0.97183 0.97627 0.97972 0.82349 0.99761 0.89893 0.99819 0.99345 0.94065 0.99375 0.96866 0.95841
FastDetectGPT 2 0 0.97335 0.96636 0.97593 0.85763 0.99305 0.91412 0.99851 0.98910 0.94400 0.98469 0.98023 0.96154
Binoculars 2 1 0.99459 0.98569 0.98585 0.91758 0.99925 0.96204 0.99993 0.99942 0.95250 0.99732 0.97588 0.97910
FastDetectGPT 2 1 0.99470 0.97686 0.98179 0.93533 0.99594 0.96306 0.99993 0.99799 0.95402 0.99441 0.98457 0.97987
Binoculars 2 3 0.99417 0.98038 0.97641 0.68528 0.99709 0.96864 0.99807 0.99378 0.86997 0.99491 0.90954 0.94257
FastDetectGPT 2 3 0.99618 0.97637 0.97700 0.72250 0.99601 0.97237 0.99997 0.99405 0.88457 0.99509 0.93609 0.95002
Binoculars 3 0 0.85527 0.93737 0.95387 0.79709 0.99687 0.52522 0.99323 0.96276 0.89972 0.96142 0.94402 0.89335
FastDetectGPT 3 0 0.86263 0.93726 0.95519 0.81322 0.99419 0.52588 0.99398 0.96045 0.91163 0.95339 0.95770 0.89687
Binoculars 3 1 0.91470 0.92920 0.92923 0.88144 0.99245 0.60599 0.99881 0.98299 0.87891 0.97938 0.92556 0.91079
FastDetectGPT 3 1 0.92361 0.93678 0.93578 0.89008 0.99040 0.62426 0.99792 0.98310 0.88995 0.97919 0.93025 0.91648
Binoculars 3 2 0.84538 0.90754 0.91513 0.64079 0.99382 0.54105 0.98113 0.89614 0.76557 0.93707 0.83912 0.84207
FastDetectGPT 3 2 0.85196 0.90944 0.91961 0.64439 0.99140 0.53714 0.98236 0.89891 0.78080 0.93265 0.85672 0.84594

Table 10: AUROC on RAID for all configurations of Falcons for Binoculars and FastDetectGPT. Configurations
are indicated by the index of the models used : Falcon-7b[0], Falcon-7b-instruct[1], Falcon-40b[2], Falcon-40b-
instruct[3].



Method chatgpt cohere-chat cohere gpt2 gpt3 gpt4 llama-chat mistral-chat mistral mpt-chat mpt Average

Binoculars 0 1 0.98900 0.91600 0.90500 0.69000 0.99200 0.80400 1.00000 0.99600 0.62100 0.99400 0.72900 0.87600
FastDetectGPT 0 1 0.99000 0.88800 0.89700 0.78700 0.98100 0.84400 1.00000 0.99000 0.71500 0.98400 0.85000 0.90236
Binoculars 0 2 0.70200 0.55800 0.38200 0.00900 0.94900 0.08000 0.97600 0.62700 0.00500 0.80600 0.01300 0.46427
FastDetectGPT 0 2 0.26200 0.12900 0.18500 0.00200 0.21400 0.03200 0.62800 0.10600 0.00800 0.10600 0.01900 0.15373
Binoculars 0 3 0.97900 0.72900 0.57400 0.01000 0.98000 0.35000 0.99900 0.95900 0.02400 0.98000 0.03000 0.60127
FastDetectGPT 0 3 0.72500 0.33100 0.29500 0.00200 0.32900 0.21000 0.96200 0.49900 0.01900 0.42200 0.04100 0.34864
Binoculars 1 0 0.10100 0.31800 0.14200 0.01000 0.68700 0.00800 0.54300 0.21500 0.02000 0.28400 0.03200 0.21455
FastDetectGPT 1 0 0.04700 0.07400 0.11400 0.01400 0.10500 0.00600 0.37900 0.05400 0.05300 0.04800 0.10200 0.09055
Binoculars 1 2 0.03100 0.08000 0.03200 0.00600 0.34500 0.00500 0.35700 0.01700 0.00300 0.07900 0.00700 0.08745
FastDetectGPT 1 2 0.00800 0.00100 0.01000 0.00000 0.01000 0.00400 0.00600 0.00000 0.00100 0.00200 0.00300 0.00409
Binoculars 1 3 0.30600 0.29200 0.07200 0.00500 0.50200 0.01400 0.66700 0.23400 0.00300 0.46300 0.01000 0.23345
FastDetectGPT 1 3 0.01600 0.00500 0.01200 0.00000 0.01400 0.00400 0.04100 0.00200 0.00100 0.00200 0.00400 0.00918
Binoculars 2 0 0.89200 0.92800 0.94100 0.35000 0.99600 0.57700 0.99900 0.98500 0.74700 0.98600 0.85900 0.84182
FastDetectGPT 2 0 0.89500 0.88200 0.92200 0.51400 0.97300 0.69400 0.99700 0.96100 0.78600 0.94400 0.91200 0.86182
Binoculars 2 1 0.98700 0.95000 0.95300 0.58700 0.99700 0.85900 1.00000 0.99700 0.78400 0.99500 0.87700 0.90782
FastDetectGPT 2 1 0.98500 0.90900 0.92800 0.71900 0.98100 0.85300 1.00000 0.99200 0.79700 0.98300 0.91800 0.91500
Binoculars 2 3 0.99300 0.93100 0.92400 0.14300 0.99400 0.89700 1.00000 0.98800 0.52800 0.99500 0.60100 0.81764
FastDetectGPT 2 3 0.99500 0.90800 0.91600 0.28600 0.98500 0.91300 1.00000 0.98500 0.63400 0.98700 0.76400 0.85209
Binoculars 3 0 0.49300 0.82800 0.84400 0.39300 0.99200 0.05500 0.97800 0.86700 0.62400 0.85700 0.77400 0.70045
FastDetectGPT 3 0 0.53400 0.78700 0.83700 0.48700 0.98000 0.09600 0.97500 0.83800 0.68500 0.79500 0.83700 0.71373
Binoculars 3 1 0.71400 0.81700 0.80800 0.56500 0.96900 0.15100 0.99500 0.94600 0.59400 0.94000 0.73600 0.74864
FastDetectGPT 3 1 0.70100 0.78800 0.77800 0.61100 0.95200 0.16400 0.99300 0.91900 0.62900 0.90700 0.77400 0.74691
Binoculars 3 2 0.48200 0.73100 0.72300 0.13800 0.98900 0.04300 0.93800 0.66900 0.30000 0.77800 0.39800 0.56264
FastDetectGPT 3 2 0.51000 0.70700 0.72900 0.21200 0.97200 0.09400 0.93500 0.65400 0.38900 0.71500 0.55800 0.58864

Table 11: TPR@5%FPR on RAID for all configurations of Falcons for Binoculars and FastDetectGPT. Con-
figurations are indicated by the index of the models used : Falcon-7b[0], Falcon-7b-instruct[1], Falcon-40b[2],
Falcon-40b-instruct[3].

Method chatgpt cohere-chat cohere gpt2 gpt3 gpt4 llama-chat mistral-chat mistral mpt-chat mpt Average

Binoculars 0 1 0.98868 0.98521 0.97708 0.77221 0.99868 0.95950 1.00000 0.99325 0.87059 0.99826 0.89373 0.94884
FastDetectGPT 0 1 0.98843 0.98087 0.97859 0.80717 0.99594 0.96678 1.00000 0.98990 0.89063 0.99503 0.92696 0.95639
Binoculars 0 2 0.78407 0.95574 0.96148 0.80034 0.99533 0.75383 0.98365 0.93690 0.89692 0.96825 0.93239 0.90626
FastDetectGPT 0 2 0.78205 0.95023 0.96258 0.82922 0.99061 0.76525 0.98419 0.93287 0.91102 0.95666 0.95267 0.91067
Binoculars 0 3 0.82575 0.90990 0.91668 0.50181 0.98496 0.62274 0.97900 0.88801 0.76507 0.94356 0.81524 0.83207
FastDetectGPT 0 3 0.77696 0.83897 0.88423 0.57974 0.93333 0.64056 0.95657 0.80964 0.79026 0.82991 0.87509 0.81048
Binoculars 1 0 0.58200 0.79002 0.75954 0.70742 0.97505 0.49584 0.83473 0.69413 0.72506 0.78803 0.74389 0.73597
FastDetectGPT 1 0 0.58753 0.80557 0.76156 0.66687 0.97223 0.45940 0.82525 0.71417 0.70701 0.81873 0.70547 0.72944
Binoculars 1 2 0.56796 0.75465 0.76687 0.72228 0.96559 0.50900 0.80903 0.70925 0.72264 0.74014 0.75186 0.72902
FastDetectGPT 1 2 0.54410 0.77559 0.77060 0.68639 0.96576 0.45812 0.78384 0.71097 0.70689 0.77309 0.71989 0.71775
Binoculars 1 3 0.51082 0.68785 0.71171 0.51711 0.94521 0.37595 0.74094 0.55979 0.60934 0.66094 0.63689 0.63241
FastDetectGPT 1 3 0.50535 0.67341 0.70523 0.50097 0.91377 0.36301 0.73958 0.55247 0.60627 0.64651 0.63589 0.62204
Binoculars 2 0 0.95832 0.93661 0.92122 0.64083 0.99498 0.80933 0.99431 0.97987 0.78711 0.99023 0.78671 0.89087
FastDetectGPT 2 0 0.95451 0.91550 0.92841 0.71961 0.98027 0.84700 0.99345 0.96768 0.84736 0.96719 0.87606 0.90882
Binoculars 2 1 0.99466 0.97298 0.95712 0.66708 0.99810 0.95333 0.99997 0.99584 0.79541 0.99853 0.79537 0.92076
FastDetectGPT 2 1 0.99318 0.95637 0.95732 0.73729 0.98816 0.96584 0.99996 0.99052 0.83830 0.99041 0.86718 0.93496
Binoculars 2 3 0.93911 0.90875 0.87909 0.45877 0.98512 0.71763 0.98668 0.95586 0.69021 0.97678 0.69611 0.83583
FastDetectGPT 2 3 0.90842 0.84184 0.85347 0.55726 0.91478 0.75533 0.97874 0.90606 0.75215 0.89647 0.81150 0.83418
Binoculars 3 0 0.95895 0.95099 0.95582 0.73085 0.99658 0.83482 0.99527 0.98233 0.88173 0.98795 0.90806 0.92576
FastDetectGPT 3 0 0.94743 0.92731 0.94888 0.78517 0.98916 0.86043 0.99348 0.96569 0.90673 0.96440 0.95181 0.93095
Binoculars 3 1 0.99569 0.98342 0.97868 0.74037 0.99948 0.96954 0.99999 0.99752 0.87714 0.99773 0.89556 0.94865
FastDetectGPT 3 1 0.99418 0.96904 0.97333 0.79378 0.99494 0.97381 0.99999 0.99281 0.90178 0.99130 0.94086 0.95689
Binoculars 3 2 0.93622 0.95978 0.95667 0.81153 0.99729 0.84474 0.99411 0.98110 0.91501 0.98647 0.94575 0.93897
FastDetectGPT 3 2 0.93160 0.94640 0.95190 0.84095 0.99159 0.86386 0.99445 0.97235 0.92340 0.97124 0.96553 0.94121

Table 12: AUROC on RAID for all configurations of our Llamamodels for Binoculars and FastDetectGPT. Configu-
rations are indicated by the index of the models used : Llama-2-7b[0], Llama-2-7b-chat[1], TowerBase-7B-v0.1[2],
TowerBase-13B-v0.1[3].



Method chatgpt cohere-chat cohere gpt2 gpt3 gpt4 llama-chat mistral-chat mistral mpt-chat mpt Average

Binoculars 0 1 0.95300 0.93700 0.89800 0.17300 0.99300 0.77200 1.00000 0.97200 0.38900 0.99500 0.42500 0.77336
FastDetectGPT 0 1 0.94900 0.91600 0.90900 0.32400 0.98500 0.84300 1.00000 0.95800 0.55400 0.98300 0.64800 0.82445
Binoculars 0 2 0.46000 0.85900 0.87500 0.31200 0.99000 0.28000 0.94300 0.78100 0.55700 0.88500 0.69000 0.69382
FastDetectGPT 0 2 0.44700 0.83100 0.87800 0.44800 0.97300 0.35300 0.94400 0.76400 0.65600 0.82000 0.80900 0.72027
Binoculars 0 3 0.37100 0.66500 0.63700 0.01200 0.97500 0.13700 0.93500 0.51100 0.09400 0.73500 0.10800 0.47091
FastDetectGPT 0 3 0.21900 0.40900 0.55900 0.04800 0.68700 0.11800 0.78400 0.26400 0.22700 0.27900 0.40200 0.36327
Binoculars 1 0 0.07400 0.38000 0.29600 0.17300 0.90300 0.01600 0.22600 0.17500 0.19600 0.27100 0.20600 0.26509
FastDetectGPT 1 0 0.05800 0.34500 0.27900 0.15200 0.88500 0.01500 0.21600 0.14600 0.18600 0.22800 0.19200 0.24564
Binoculars 1 2 0.06600 0.30200 0.29200 0.17400 0.84700 0.02400 0.15200 0.16900 0.19000 0.18100 0.21500 0.23745
FastDetectGPT 1 2 0.06400 0.28700 0.28800 0.16500 0.83700 0.02100 0.16000 0.16000 0.20000 0.16300 0.21900 0.23309
Binoculars 1 3 0.01300 0.11900 0.13500 0.01300 0.71500 0.00700 0.05500 0.02000 0.02600 0.05400 0.03300 0.10818
FastDetectGPT 1 3 0.01200 0.08000 0.12300 0.01800 0.49900 0.00600 0.05900 0.01300 0.03500 0.01900 0.06800 0.08473
Binoculars 2 0 0.76200 0.71000 0.54000 0.03100 0.99000 0.23200 0.99000 0.89700 0.08200 0.96300 0.06200 0.56900
FastDetectGPT 2 0 0.74800 0.66300 0.66400 0.11700 0.89900 0.36900 0.98200 0.84400 0.28500 0.83200 0.36000 0.61482
Binoculars 2 1 0.98900 0.85400 0.76300 0.03200 0.99300 0.71100 1.00000 0.98600 0.12800 0.99700 0.08600 0.68536
FastDetectGPT 2 1 0.97100 0.79600 0.77500 0.11400 0.93900 0.81400 1.00000 0.96400 0.25500 0.96300 0.33900 0.72091
Binoculars 2 3 0.69700 0.63100 0.45000 0.01400 0.97500 0.17000 0.98600 0.76700 0.04000 0.91400 0.02300 0.51518
FastDetectGPT 2 3 0.50400 0.43000 0.43400 0.01500 0.58300 0.17100 0.94100 0.50800 0.11900 0.48200 0.16600 0.39573
Binoculars 3 0 0.80100 0.81800 0.81400 0.11700 0.99700 0.32500 0.99300 0.92500 0.35600 0.97700 0.44000 0.68755
FastDetectGPT 3 0 0.75500 0.74300 0.80400 0.28300 0.96600 0.45100 0.97900 0.85300 0.57000 0.85400 0.76600 0.72945
Binoculars 3 1 0.98800 0.92500 0.90100 0.11000 0.99900 0.83900 1.00000 0.99300 0.32000 0.99400 0.37100 0.76727
FastDetectGPT 3 1 0.97700 0.85900 0.88400 0.27200 0.98100 0.88200 1.00000 0.96900 0.54000 0.97200 0.70000 0.82145
Binoculars 3 2 0.70000 0.85700 0.86600 0.26900 0.99400 0.35600 0.98100 0.91200 0.54500 0.96400 0.69700 0.74009
FastDetectGPT 3 2 0.69200 0.79100 0.83400 0.41200 0.96900 0.45800 0.97400 0.86700 0.64900 0.85300 0.81300 0.75564

Table 13: TPR@5%FPR on RAID for all configurations of our Llamamodels for Binoculars and FastDetectGPT.
Configurations are indicated by the index of the models used : Llama-2-7b[0], Llama-2-7b-chat[1], TowerBase-7B-
v0.1[2], TowerBase-13B-v0.1[3].
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