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Abstract

As texts generated by Large Language Mod-
els (LLMs) are ever more common and often
indistinguishable from human-written content,
research on automatic text detection has at-
tracted growing attention. Many recent detec-
tors report near-perfect accuracy, often boast-
ing AUROC scores above 99%. However, these
claims typically assume fixed generation set-
tings, leaving open the question of how ro-
bust such systems are to changes in decod-
ing strategies. In this work, we systemati-
cally examine how sampling-based decoding
impacts detectability, with a focus on how sub-
tle variations in a model’s (sub)word-level dis-
tribution affect detection performance. We
find that even minor adjustments to decod-
ing parameters - such as temperature, top-p,
or nucleus sampling - can severely impair de-
tector accuracy, with AUROC dropping from
near-perfect levels to 1% in some settings.
Our findings expose critical blind spots in
current detection methods and emphasize the
need for more comprehensive evaluation pro-
tocols. To facilitate future research, we release
a large-scale dataset encompassing 37 decod-
ing configurations, along with our code and
evaluation framework https://github.com/
BaggerOfWords/Sampling-and-Detection.

1 Introduction

Texts generated with Large Language Models
(LLMs) have become almost indiscernible from
human-written samples (Gehrmann et al., 2019;
Clark et al., 2021; Dugan et al., 2023), raising con-
cerns regarding their use for deception or harass-
ment, among others misuses (Zellers et al., 2019;
Crothers et al., 2023; Feng et al., 2024). To an-
swer such threats, the task of Artificial Text De-
tection (ATD) has become increasingly popular,
spurring competitions such as the Voight-Kampff
Task @PAN24 (Bevendorff et al., 2024) or the
Machine-Generated Text Detection Task @ COL-
ING25(Dugan et al., 2025).

Same prompt :

The following is the full text of a

news article titled \"Act on

detention ruling, UK urged\" from
bc.com:

DETECTOR
The government should act
. immediately on a landmark ruling AI
With top-p=0.7 : by the European Court of Human | v
Rights, Amnesty International has .
said. [...]
With repetition-
penalty=1.05

Figure 1: Changes in the decoding strategy can lead to
errors in detection.

Police should be offered training
for dealing with suspects who try
to appeal against their bail terms
in English courts, policing chief Sir

Thomas Winsor has said.[...]

Most detection systems report performance on
machine-written texts generated by their authors
themselves, leading to unclear comparisons and re-
sults that may not translate well to other use-cases
(Gritsai et al., 2025). To address this issue, large
benchmarks have been developed, covering a vari-
ety of generator models (Li et al., 2024), languages
(Macko et al., 2023; Wang et al., 2024b), domains
(Guo et al., 2023) and even attacks (Dugan et al.,
2024; Wang et al., 2024a). Among those, only
Dugan et al. (2024) include four different sampling
configurations in their RAID dataset, demonstrat-
ing that greedy outputs are easier to spot than an-
cestrally sampled ones, and that adding repetition
penalty worsens performance in both cases.

Our Contribution:

* We release a large-scale and diverse bench-
mark dataset featuring texts generated us-
ing six decoding strategies across 37 decod-
ing configurations, enabling robust and fine-
grained analysis of text detector performance.

* Through extensive evaluation, we show that
state-of-the-art detection systems are highly
sensitive to generation parameters—revealing
drastic performance drops (e.g., AUROC from
0.99 to 0.01)—thus exposing critical blind
spots in current benchmarks.
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* We provide an in-depth analysis of these fail-
ures, uncovering the underlying mechanisms
behind detection success and failure, and offer-
ing new insights into the interaction between
generation dynamics and detectability.

2 Related Work

Sampling Adapters. The effects of the decod-
ing strategy on generated text is often discussed as
a trade-off between quality and diversity (Zhang
et al., 2021; Meister et al., 2022; Garces Arias et al.,
2025). Meister et al. (2023a) focus on how each
sampling technique modifies the token-level dis-
tribution of language models and the correlated
changes in the quality of generation, depicting
these alterations as a trade-off between precision
and recall instead.

Detecting artificial texts. Automatic detection
of machine-generated text has gained attention,
framed as distinguishing between human-written
(“natural”) and model-generated (“artificial”) con-
tent. This generic problem can be framed in sev-
eral ways: labelling texts as “AI” or “Human”,
detecting one known artificial agent (e.g., Chat-
GPT (Mitrovié et al., 2023; Liu et al., 2024a)), or
identifying one model in a predefined list (Li et al.,
2023). Other works consider finer grained labels,
discriminating “machine-written” from “machine-
polished” texts (Abassy et al., 2024; Liu et al.,
2024b). Lastly, some datasets focus on one particu-
lar domain (e.g., scientific (Liyanage et al., 2022),
academic (Liu et al., 2024a) or “user-generated"
(Fagni et al., 2021; Kumarage et al., 2023a)) rather
than on open-domain detection.

Detection as Text Classification. When su-
pervision data is available for training, artificial
text detectors often achieve near-perfect accuracy
rates (99% and above) (Guo et al., 2023; Liu et al.,
2024a; Verma et al., 2023). Their robustness with
respect to changes in the text generation model is
however questioned by Antoun et al. (2024). In
unsupervised settings, the best current methods
are perturbation-based (Hans et al., 2024; Mitchell
et al., 2023; Bao et al., 2025; Dubois et al., 2025)
and rely on the assumption that human texts are
more “surprising” than machine ones. Implement-
ing this idea typically involves to use one or several
detector model(s) to evaluate surprisal. Alternative
approaches are based on text-rewriting techniques
(Mao et al., 2024; Yang et al., 2024).

Testing detectors robustness. ATD benchmarks

Li et al. (2024); Dugan et al. (2024); Wang et al.
(2024a) typically include multiple types of gen-
erated texts, mimicking attacks aimed at fooling
detectors. At the generation step, varying prompts
(Koike et al., 2024; Kumarage et al., 2023b; Lu
et al., 2024) has been proven to evade detection.
After generation, post-hoc methods such as para-
phrasing (Krishna et al., 2023), or replacing certain
characters or words are very effective as well, yet
they can significantly alter the original text (Macko
etal., 2024). In this work, we do not seek to deceive
but simply study the influence of the decoding strat-
egy on the detectability of the generated content,
as it has been done partly in the studies of Ippolito
et al. (2020), highlighting the effects of top-p and
top-k sampling on detecting artificial texts, and
Fishchuk and Braun (2023), tweaking the parame-
ters of the OpenAl API to see which would evade
the now discontinued OpenAl generated text de-
tector, with frequence and presence penalty being
the most impactful. We aim to provide a complete
report as to how the generation strategy modifies
the outputs, and why some of them go under the
radar. As we observe in § 6, simply tweaking the
generation parameters can completely derail state-
of-the-art detectors, especially the unsupervised
ones.

3 Text Generation

3.1 Language Models

Language models are probability distributions over
an output space ) containing all possible strings
over a finite vocabulary Q: ) £ {BOSoyoEOS ly €
Q*}, where BOS and EOS respectively denote the
beginning-of-sequence and end-of-sequence tokens
and Q* is the Kleene closure of 2.

Neural models for text generation are
parametrized with trainable weights § € ©
and follow a local-normalization scheme, meaning
that V ¢t > 0, pp(-|y<¢,) defines a conditional
distribution over 2 = Q U EOS. The probability of
sequence y = (yo, - . . , yr) factors as:

T
p(y) = [ [ po(vely<s), (1)
t=1

with y <t = (yo, ..., ¥t-1), Yo = BOS; yr = EOS.

3.2 Decoding Strategies

To generate text with a language model, a decoding
strategy needs to be formalized, which describes



how the next token will be chosen from py in or-
der to extend the current string. Starting from a
prefix y of length S, either equal to the (BOS) to-
ken or the user’s prompt, and at each time step
t we generate from pg ( | y<t) with y; =
(Vs YS+1s -+ Yst—1)-

Sampling Adapters. Many generation strate-
gies can be seen as sampling from an adapted dis-
tribution derived from the model’s output pg, using
transformation functions known as adapters (Meis-
ter et al., 2023a):

Q-1 Q-1
Ctparam AT A9

that transforms the base distribution py(- | y<¢)
over the full vocabulary € into a new distribution
over a (possibly smaller) support. We write

PP (| y ) 2 g (ol | y<r) @)

In this study, we consider six adapters, represen-
tative of the most common generation strategies.
Temperature Sampling is defined as:
pmP=D(y | y<r) o< poly | y<i) /7.
for some temperature parameter 7' > 0. T' = 1 cor-
responds to ancestral sampling, selecting tokens
using the actual model distribution; the limiting
case T' — 0 corresponds to greedy decoding.
Repetition penalty (Keskar et al., 2019) is de-

fined as:
po(y | Y<t)1/T
(rep=T) Z—JJ € {y«t},
p (y | Y<t): pe(y ’ yC t)
27<, otherwise.
C

Where Ze = > ccp(y' | y<t) is a normaliser
and 7' > 0 the repetition parameter. With T" > 1,
this makes tokens that have been already be gener-
ated less likely, favouring diversity in the output.
Another family of popular sampling adapters
rely on truncation functions, concentrating the
probability mass on a strict subset of {2, and as-
signing a null probability to all the others tokens.
This means that for adapter .4, you select a subset

QgA) C Q at each step ¢, then renormalize:

” po(y (\A};«)’ ye o,
Py y<t) = Zy
0, otherwise,

where Zt(A) = Zy’GQ(A) oy | y<t). We con-
t

sider the four following truncation adapters, each

associated with a specific criterion.

Top-p (nucleus) sampling (Holtzman et al.,
2020) relies on:
QEtOp’p ) = argmin || 3)
QCQ

where Y po(y | y<i) > p.
ye!

A token can only be generated if it belongs to the
smallest subset of {2 whose combined probability
mass is greater than p.

Top-k sampling (Fan et al., 2018) relies on:

-k
Q" =argmax Y poly | y<r) @)
Q'CQ yeqQ

where |Q'| = k.

This strategy only generates tokens that are among
the k& most likely ones.

Locally typical sampling (Meister et al., 2023b)
relies on:

7 g S 152
Q,QQ yGQ’

+logpg(y | y<t)

where Y~ po(y | y<i) > 7.
yey
In other words, QE“’” ial) restricts samplings to to-
kens whose individual log-probabilities lie closest
to the (sub)word-level entropy, with a combined
probability mass of at least 7, the parameter value.

n-sampling (Hewitt et al., 2022) relies on:

O = {yeQlpoly | y<t)>m} )

where 7, = min (¢, v/eexp(—H (pg(- | y<t))))-
This corresponds to a subset of tokens with prob-

ability greater than 7, a function of the lo-
cal conditional entropy H of the current context
parametrized by e.

4 Measuring Diversity

4.1 Evaluating Text Generation

Standard evaluation metrics such as perplexity-the
exponentiated average negative log-likelihood of a
sequence- primarily measure a model’s ability to
predict each next token in isolation and thus cap-
ture only local, short-range dependencies. They
overlook higher-level structural properties—such
as syntactic richness or discourse coherence, that
are crucial to our perception of naturalness. Our



aim here is rather to assess if the produced outputs
exhibit the same statistical tendencies as human
samples. To this end, we follow the work done
by Meister and Cotterell (2021) and measure the
following metrics, aimed at capturing lexical di-
versity. These are functions of the input text y, IV
represents the total text length, and V' the set of
unique words it contains.

MTLD (Measure of Textual Lexical Diver-
sity): Estimates the average number of tokens'
needed before the Type—Token Ratio (TTR) falls
below a threshold ©:

MTLD =

m
1
2
Jj=1

where spans of length n;
thpesfw < ©O. Our experiments use
0= O.%2 (McCarthy and Jarvis, 2010).

Hapax Legomena Ratio measures the propor-

tion of types that occur exactly once:

A
9|’
= 1}| and |Q] is the

end when

HLR =

with V1 = {w :
vocabulary size.
Simpson’s Diversity Index (Simpson, 1949):
Gives the probability that two randomly chosen
tokens (with replacement) are of the same type, the
lower the value, the more diverse the text is.

D= Zprop?,

1=1

freq(w)

were prop; is the proportion of token y; in the text.
Zipfian Exponent (o) (Zipf, 1950): Quantifies

how steeply token frequency f, decays with rank r

under Zipf’s law; larger a means faster drop-off:

log fy = —a logr + C,
Cov(logr,log fiy)
Var(log r)
Heaps’ Law Exponent (5) (Herdan, 1960):
Models the rate at which new tokens appear; how

distinct word count grows with the total tokens as
V(N) ~ K N with K a constant:

a = —

logV; = S log N; + C,
5= Cov(log N;,log V;)
~ Var(log;)

"Lexicographic metrics are defined based on the number
of tokens, which count word occurrences and fypes, which
correspond to unique word occurrences (Baayen, 2001).

Where NV; is the total number of tokens in sample
1, and V; the number of distinct tokens in sample 3.

4.2 Comparing Probability Distributions

To better monitor the effect of each sampling
adapters on the original probability distribution, we
consider multiple measures of divergence between
probability distributions p and q. These metrics
will also be used in the analysis of unsupervised
detectors (§ 6.3).

Total Variation Distance: Measures the maxi-
mum discrepancy between probabilities assigned
by the distributions (half the L! difference):

9) =% Iny) -
Vy

Cross-Entropy: Captures the average number of
bits needed to encode samples from p when using
coding optimized for ¢:

Zp

log q(y

Kullback-Leibler Divergence: Computes the
relative increase in entropy when using ¢ to approx-
imate p:

Dxur(pllg) = ZP 7y

a(y)
Vp,q, DxL(p,q) > 0 and Dxr(pllg) =0 & p =
q (Cover and Thomas, 2006).

Rényi Divergence (o« > 0, # 1): Gener-
alizes KL divergence (corresponding to a@ = 1),
emphasizing different parts of the distribution de-
pending on the value of a. a > 1 emphasizes
high-probability (“head”) events of P, while o < 1
boosts small P(x), making the divergence sensitive
to mismatches in the tail of the distribution:

Dq(pllq) =

: log(zp(y)a Q(y)l’“)-
Yy

Euclidean (L») Distance: Considers p and g as
vectors in R/l and measures L2 norm.

lp—all2= > (p(y) -
Vy




5 Datasets

5.1 Human and Artificial Texts

In order to evaluate the effects of sampling on re-
alistic data, generated with high-quality models,
we randomly picked 2,000 English texts from the
human samples of the RAID dataset, spanning
across 11 different domains, along with their cor-
responding prompts. Then, using Llama-3.2-3B
(Llama Team, 2024), we generated 37 artificial
counterparts to each of these samples: 36 use the
aforementioned sampling adapters, with hyperpa-
rameter values detailed in Table 1 while the remain-
ing one uses vanilla ancestral sampling. We split
them into training and test set using a 1:1 ratio.

Sampling adapters

Temperature 0.5 0.7 0.9 1.1 1.2 1.3

Repetition penalty 1.05 1.10 1.15 120 1.25 1.30
Top-k sampling 10 20 50 75 100 1000
Top-p sampling 0.3 0.5 0.7 08 09 095
Typical sampling 0.3 0.5 0.7 0.8 09 095
7 sampling 107* 1073 5x107% 001 005 0.1

Table 1: Sampling adapters and tested parameter values,
to which we added ancestral sampling

The prompts used are the ones carefully crafted
by Dugan et al. (2024); they are removed from
the generated texts when saving the outputs.
Generation was performed using Huggingface’s
.generate() function, where all these sampling
adapters are implemented, with the value of
max_tokens set to 512 to approximately match
the lengths of the human samples.

5.2 Sampling Parameters Impact Lexical
Diversity

Table 2 reports all 5 measures of diversity men-
tioned in Section 4 for every generated dataset,
using the parameters mentioned in Table 1. We use
the human samples as a gold-standard profile of
diversity. Relative to that baseline, we make the
following observations:

Temperature: at 7' = 1.0, MTLD and Simpson
come reasonably close to human diversity. Cooler
settings (0.5-0.7) under-diversify, while hotter set-
tings (1.1-1.3) overshoot dramatically, leading to
non-sensical outputs.

Repetition Penalty: a mild penalty (1.05) drives
MTLD to over 4 times the average human span
length, and halves Simpson, creating unnaturally
long yet (ironically) repetitive runs. Stronger penal-
ties stray even further from the human profile, often
leading to nonsensical text.

Parameter ‘ MTLD Hapax* Simpson* Zipf, Heaps* Avg.length Perplexity

human 94.60  34.90 0.66 1.20 59.46 389.38 14.32
temperature 0.50 28.24  30.56 096 140 67.74 422.44 2.64
temperature .70 38.50  32.56 0.87 1.29 64.60 386.63 4.10
temperature 0.90 70.20  36.09 0.73 1.19 64.75 378.32 11.07
temperature 1.00 121.41  38.09 0.57 1.12  66.50 375.54 38.08
temperature 1.10 684.80 38.88 022 1.02 6742 384.26 612.48
temperature 1.20 7081.06 35.24 0.04 095 6437 411.83  7048.55
temperature 1.30 15264.92  32.51 0.02 091 63.55 443.49 1447599
repetition-penalty 1.05| 428.22 38.19 031 1.10 63.85 395.76 107.55
repetition-penalty 1.10| 1600.29  36.28 0.13 1.08 60.95 419.39 221.67
repetition-penalty 1.15| 3020.03  34.92 0.06 1.08 60.31 432.29 383.13
repetition-penalty 1.20| 4373.57 33.23 0.04 1.08 58.84 450.55 547.10
repetition-penalty 1.25| 5098.23  32.26 0.03 1.08 57.53 459.39  621.26
repetition-penalty 1.30| 5570.62 31.84 0.03 1.08 5736 474.47 737.22
top-k 10 51.04 32.54 0.79 1.27 64.86 357.78 4.98
top-k 20 63.60 33.23 0.76 125 63.07 370.95 6.38
top-k 50 75.68  34.81 0.71 123 6259 370.98 16.04
top-k 75 76.64 3541 0.68 1.22 62.42 365.80 9.63
top-k 100 81.71 36.02 0.68 123 63.72 371.80 11.12
top-k 1000 102.50  36.04 0.62 1.17 64.64 385.51 73.69
top-p 0.30 2400 31.15 1.01 148 69.00 471.39 3.30
top-p 0.50 28.75  30.79 095 139 6524 442.06 2.71
top-p 0.70 36.60 33.62 0.87 1.31 63.37 397.86 391
top-p 0.80 51.07 33.74 0.81 1.26 65.10 383.93 6.48
top-p 0.90 69.83  36.17 0.74 121 63.22 376.26 10.41
top-p 0.95 83.70 36.44 0.67 1.19 6458 372.32 19.07
typical-sampling 0.30 7478 3592 0.67 123 60.15 404.97 13.70
typical-sampling 0.50 60.16 3547 0.75 123 63.69 392.03 8.87
typical-sampling 0.70 5276 3445 0.80 1.23 63.59 381.17 6.83
typical-sampling 0.80 5377 3455 0.81 1.24 62.24 387.65 6.49
typical-sampling 0.90 6592  36.05 0.73 122 64.10 377.71 306.77
typical-sampling 0.95 87.52  36.51 0.68 1.19 64.54 380.18 19.70
eta-sampling 0.01 6335 35.10 0.77 124 63.39 378.02 9.40
eta-sampling 0.05 4796 33.93 0.83 127 65.07 383.29 5.08
eta-sampling 0.10 43.03 3347 0.84 1.28 63.25 385.43 4.51
eta-sampling le-3 80.53 35.86 0.70 1.21 6534 380.43 10.87
eta-sampling 5e-3 65.60  35.06 0.75 1.23 63.68 37226 9.91
eta-sampling le-4 9345 36.53 0.65 1.18 64.31 369.62 17.38

Table 2: Lexical diversity within our dataset. * Ha-
pax, Simpson, and Heaps’ values are multiplied by 102.
Length is in Llama-3.2-3B tokens. Highlighted in green
are parameters that come close to the human standards
(in yellow).

Truncation Sampling. For top-kK, as k grows,
the lexical distribution becomes more disparate,
surpassing human standards as k& reaches 1, 000.
Top-p and Typical Sampling behave similarly,
with values closer to 1 approaching the human ref-
erence. Regarding n-sampling, at n = 1 x 1074,
MTLD and Simpson’s index nearly match human
levels and the Hapax ratio even slightly exceeds it
— indicating very human-like generation. Larger
values lead to lower MTLD and higher Simpson,
yielding more repetitions than in human samples.

In summary, n = 1074, T = 1.0, £ = 100,
p = 0.95, and 7 = 0.95 yield diversity metrics
closest to human text, whereas extreme repetition
penalties or overly permissive settings push MTLD
and perplexity far beyond—and Simpson far be-
low— their natural (human) ranges. For further
information, correlation between these measures
and unsupervised detectors performance is reported
in Appendix B Table 9.

5.3 Impact on Human Evaluation

Both extreme diversity regimes degrade quality in
opposite ways. When diversity is too high, the



sampler select tokens from very low-probability re-
gions, yielding nonsensical outputs with grammati-
cal errors and even language changes. Such texts
are typically marked by depressed Simpson and
inflated MTLD/Hapax. When diversity is too low,
probability mass concentrates on frequent types,
driving up Simpson and suppressing MTLD, which
manifests as repetitive n-grams that feel artificial.
By contrast, keeping these metrics within the hu-
man range produces fluent and coherent text; see
Appendix D for examples.

6 Experiments

6.1 Artificial text detectors

We evaluate three identification methods.> As
most supervised approaches involve training a
RoBERTa-based (Liu et al., 2019) classifier, we
adopted the same strategy to assess this setup.
We fine-tuned a RoBERTa-base model using
transformers.Trainer? along with the default
TrainingArguments : a learning rate of 5e-05 for
3 epochs, using AdamW as the optimizer. In the un-
supervised setting, we tested both Binoculars(Hans
et al., 2024) and FastDetectGPT (Bao et al., 2024),
as they are the top performers reported in the RAID
leaderboard (Dugan et al., 2024).

In all these settings, we place ourselves in a
“best-case scenario”, as the supervised case in-
volves training and testing on the same generator
model, and we use Llama-3.2-3B (gq) and Llama-
3.2-3B-Instruct (r) as the underlying models for
both Binoculars and FastDetectGPT, per their au-
thor’s suggestion. Bao et al. (2024) recommend
detecting with the same model used for generation,
and Hans et al. (2024) advise to use a model and
its Instruct version as an ideal combination.

6.2 Supervised Detection

Figure 2 displays a heatmap representing what hap-
pens when training a RoBERTa classifier to distin-
guish between human and generated texts using
one parameter (like temperature=7"), then testing
if it can identify machine outputs generated using
another (like typical=p). It appears that detectors
trained on repetition-penalty and high temperatures
do not generalize well (and vice-versa), whereas
parameters that are often recommended for their

2We also considered DNA-GPT (Yang et al., 2024), a
rewriting approach, but the results were poor, see Appendix C.

3h'ctps://huggingface.co/docs/transformers/
main_classes/trainer

Figure 2: Heatmap of accuracy detection rates when
training using data generated with the row parameter
and testing on the column one. For further details, this
heatmap is displayed in full in Appendix E Figure 4.

“better” generation quality (values of p, T" and typi-
cal close to 1, small values of n and high values of
k) lead to well-rounded performance.

Training on a uniformly sampled mixture of the
training data seems to solve misclassification issues
almost entirely, yielding an accuracy of at least 95%
for all tested parameters. See Table 3 and Appendix
Figure 4 for further details.

Training on a mixture of parameters that are
close to human levels (the rows highlighted in
green Table 2) lead to a supervised detector with
good all-around performance, yielding an accu-
racy of 94% averaged on all parameters. Nonsensi-
cal generations due high temperatures are bringing
down the mean performance with accuracies of
87% and 80% for T=1.2 and T=1.3 respectively.

A small follow-up experiment however reveals
that training with a mixture of data still yields to
a very brittle detector. For this experiment, we
changed the human subset of the RAID test data
(comprising BBC News articles (Greene and Cun-
ningham, 2006)) and replaced it with News articles
from the CCNews subset of Common Crawl (2016).
We observed a strong decrease in detection accu-
racy, which drops down to 72% on average. This
introduces a small domain mismatch, as only about
a tenth of the training texts were part of a news
dataset, and suggests that our supervised classifier
is mostly overfitting its human training dataset, and
struggles with other sources of texts, even from the
same domain. Since the goal of this study is about
sampling parameters, we will not dig further down
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temp<l temp=1 temp>1 rep-penalty top-k top-p typical 7 mixture
eta 095  0.87 0.64 0.72 094 094 094 094 0.88
rep-penalty | 0.57  0.70  0.98 0.96 0.60 0.57 0.59 059 0.69
temp<1 095 079 0.63 0.68 091 094 091 092 0.85
temp=1 088 096  0.99 0.99 092 087 090 0.90 0.92
temp>1 052  0.61 0.95 0.88 054 052 053 053 0.62
top-k 095 089 0.68 0.76 095 095 094 095 0.89
top-p 0.93 0.77 0.61 0.65 0.89 093 0.89 0.90 0.83
typical 095 091 0.73 0.82 094 094 094 094 0.90
mixture 096 095 098 0.98 095 096 095 0.95 0.96

Table 3: Aggregated sampling-parameter accuracy values. ROBERTa is trained with texts generated with the “row’

i

parameter value, and tested with the “column” one. Bolded is Best value per column, underlined is second best.

this path.

6.3 Unsupervised Detection

The unsupervised detection methods considered
here involve the combination of two detector mod-
els g and r. For these methods, the detection score
averages over tokens the (log)-difference of the sur-
prisal of the current token computed by the main
model g with the cross-entropy between the auxil-
iary model r and q. Formally, for input sequence
y = (Y0, Y1, - .. yr), the Binoculars score B, ,(y)
is defined by :

s Y >yea Ly = vl Lo(yely <)

Zthl zye() 7“(3/‘Y<t)['q(y’}’<t)

(6)
with Lq(yely<t) = —log q(yt|y<t), and q(y[y <)
and r(y|y<¢) representing the probabilities as-
signed by models ¢ and r, respectively, to token y
conditioned on the current context y ;. The sum-
mation over {2 in Eq. (6) implies that this score is
only valid when ¢ and r have the same support,
meaning that they share a common underlying vo-
cabulary and tokenizer.

FastDetectGPT’s scoring method is using a simi-
lar idea but normalizes scores and approximates the
cross-entropy, more details are in Appendix A. Un-
like in the supervised case, these methods do not di-
rectly output a label but rather a score, which is why
we report AUROC as our metric for these methods
(computed with scikit-learn (Pedregosa et al.,
2011)). These scores cannot be compared to the
accuracy values reported in Section 6.2. AUROC
values close to 0 and 1 indicate that the scores his-
tograms are well separated, and scores close to
0.5 indicate that the human and machine texts are
indistinguishable from one another.

Table 4 reports the performance of both methods
on all texts generated with the sampling adapters of

By (y)

section 3.2. Similar to the supervised setting, repe-
tition penalty and temperatures above 1 are trouble-
makers, making FastDetectGPT unable to separate
human and machine-written samples, whereas the
latter tend to become “too human-like”, i.e., sur-
prising, for Binoculars. An example is shown in
Figure 3. In most other settings, Binoculars outper-
forms FastDetectGPT by a very small margin. We
hypothesize that these differences are due to the
cross-entropy term being fully computed in Eq. 6,
allowing Binoculars to better deal with words that
are in the tail of the distribution, as opposed to the
empirical cross-entropy used in Eq. 7.

human vs top-p_0.9 s repetition-penalty_1.05

repetition-penalty_1.05

(a) Binoculars scores.

human vs top-p_0.9 " human vs repetition-penalty_1.05

human human
op-p_0.9 repetition-penalty_1.05

2 -1 0o 1 2 3 4 5 6 2 -1 0o 1 2 3 4 5 6

(b) FastDetectGPT scores.

Figure 3: Scores histograms for top-p = 0.9 (left) and
repetition penalty = 1.05 (right). For top-p, both detec-
tors behave as intended, clearly separating human and
machine scores. On the right, Binoculars switches the
scores, going over the threshold value that was around
0.9 (this can be fixed by introducing a second theshold
for high scores). For FastDetectGPT, the scores his-
tograms are completely blended together, showing that
repetition-penalty fully breaks that method.

However, fixing the issue with mixture models
did not prove as successful as in the supervised case.



Temperature Repetition penalty
Method 0.5 0.7 0.9 1.1 1.2 1.3 Method 1.05 1.10 1.15 1.20 1.25 1.30
Fast 0.9468 0.9419 0.8729 0.3693 0.2608 0.1672 Fast 0.4443 0.3235 0.3897 0.4774 0.5171 0.5699
Binoculars 0.9928 0.9918 0.9449 0.0200 0.0056 0.0019 Binoculars 0.0711 0.0182 0.0157 0.0157 0.0164 0.0182

Fast-uniform 0.9713 0.9649 0.9029 0.3529 0.2098 0.1045
Binoculars-uniform 0.9937 0.9927 0.9571 0.0342 0.0101 0.0036

Fast-uniform 0.4189 0.2979 0.3678 0.4552 0.4967 0.5473
Binoculars-uniform 0.0986 0.0319 0.0300 0.0326 0.0342 0.0380

Top-k

Method 10 20 50 75 100 1000

Top-p
Method 03 05 07 08 09 095

Fast 0.9198 0.9038 0.8659 0.8280 0.8421 0.7555
Binoculars 0.9916 0.9834 0.9544 0.9214 0.9188 0.6355
Fast-uniform 0.9483 0.9321 0.8946 0.8598 0.8719 0.7686
Binoculars-uniform  0.9922 0.9846 0.9596 0.9306 0.9310 0.6800

Fast 0.9533  0.9680 0.9604 0.9395 0.8898 0.8254
Binoculars 0.9942 0.9956 0.9975 0.9928 0.9726 0.8625
Fast-uniform 0.9751 0.9829 0.9779 0.9616 0.9190 0.8526
Binoculars-uniform  0.9941 0.9959 0.9978 0.9938 0.9784 0.8868

Typical sampling n-sampling
Method 0.3 0.5 0.7 0.8 0.9 0.95 Method le-4 le-3 5e-3 0.01 0.05 0.10
Fast 0.8776 0.9308 0.9329 0.9382 0.8874 0.8362 Fast 0.7799 0.8553 0.9019 0.9102 0.9466 0.9487

Binoculars 0.9047 0.9851 0.9887 0.9933 0.9630 0.8703
Fast-uniform 0.9050 0.9544 0.9557 0.9609 0.9144 0.8606
Binoculars-uniform 0.9375 0.9904 0.9903 0.9950 0.9683 0.8924

Binoculars 0.7672  0.9355 0.9779 0.9839 0.9965 0.9928
Fast-uniform 0.8006 0.8827 0.9288 0.9348 0.9676 0.9682
Binoculars-uniform 0.7958 0.9454 0.9816 0.9855 0.9970 0.9937

Table 4: ROC AUC of Binoculars and Fast(DetectGPT) across decoding parameters, by adapter family. Highlighted
in yellow are the settings the closest to the human diversity values (see Table 2).

For both scoring methods (Eq. 6 and Eq. 7), we
replaced the main model ¢ by ¢, a uniform mixture
of all decoding-induced distributions considered
in our study: q(y | y<t) = % 211\7 @y | y<t)
where q1,...,qn = ¢"=4, ..., ¢toP7P=095 for
all values of Table 1, plus ancestral sampling, for a
grand total of 37 sampling settings.

The results of this mixture detector are re-
ported in Table 4, on rows “Fast-uniform” and
“Binoculars-uniform”. We observe that this modi-
fication of the main detector model improved the
performance for both systems for all settings (al-
beit by a very small amount), with exception of
the two troublesome ones (repetition penalty and
temperature greater than 1).

6.4 A weakness of unsupervised scores

Results of Table 2 show that the undetected gener-
ators p are the more diverse ones. Yet, the whole
appeal of two-model methods is their ability to deal
with this diversity (e.g., for instance, the discussion
in Hans et al. (2024, Sec. 3.2)). To better grasp
exactly which aspect of the adapted texts throws
detectors into disarray, we correlate Binoculars and
FastDetectGPT detection performance with two
families of indicators introduced in § 4.2: the first
compares the (adapted) generator p and the main
detector model ¢, using either samples from p (i.e,
some generated text), or the full distribution; the
second focuses on the differences between the two
detector models g and 7, with contexts sampled

from p.* All indicators are averaged over tokens.

Binoculars FastDetectGPT

Compares ¢ and samples from p

Perplexity —0.458 —-0.611
Entropy —0.910 —0.935
Compares g and p

TV —0.056 +0.050
L, (Euclidean) —0.254 —0.118
Cross-entropy +0.502 40.526
Compares q and r

KL (between models) —0.850 —0.898
Rényi (o = 0.2) —0.890 —-0.921
Rényi (a = 1.2) —0.828 —0.882

Table 5: Pearson correlation coefficients between indica-
tors and the AUROC of Binoculars and FastDetectGPT.

From Table 5, one can see that perplexity is not
the best predictor of detection performance, going
in the way Hans et al. (2024) intended. The dis-
tance between the model’s original distribution (q)
and its adapted version (p) is not better correlated:
extreme truncations induce large divergence values,
yet are very easy to detect. The two most important
factors seem to be the (averaged) entropy of g over
the text and the divergence between the two detec-
tor models: when it is high, detection performance
drops. This is because large divergences between
these two models are interpreted as signals of a
human text; it turns out that using the “trouble-

*To avoid issues with support mismatch, we use an e-
smoothed version of the probability distributions when neces-
sary: (pe = ﬁ) This trick is commonly used to ensure
that the supports of the compared distributions match (Peters
et al., 2019; Martins et al., 2020; Meister et al., 2023a).



some adaptors” also yields large divergences for
the value of ¢ and r considered here - making ar-
tificial texts look like natural generations to these
detection methods.

7 Key Takeaways

Observation N°1. The detection of machine-
written texts is not fully solved, even in supervised
settings. As shown by the last experiment in § 6.2,
human samples that are “out-of-domain” (news ar-
ticles from another source than the training data)
are poorly identified by a strong RoBERTa clas-
sifier. In addition, it seems that some generation
strategies, notably using repetition-penalties, need
to be paid special attention, when preparing the
training data for the detector.

Observation N°2. Existing benchmarks do not
sufficiently represent all decoding strategies. If
changing one parameter value (e.g., the tempera-
ture) seriously derails detectors, it is likely that they
would also struggle to identify more elaborate gen-
eration techniques such as Minimum Bayes Risk
(MBR) decoding (Bertsch et al., 2023) or Monte
Carlo Tree Search (MCTS) (Chaffin et al., 2022).

Observation N°3. Two state-of-the-art unsuper-
vised detection systems need their detector models
to assign very similar probabilities to artificial texts;
failures to do so will cause on overdetection of nat-
ural texts (Table 5). This explains why, for both
systems, optimal detection scores are obtained with
models from the same family (e.g., a pretrained
model and the matching instruct version).

8 Conclusion

In this work, we have presented a systematic study
of how sampling-based decoding strategies affect
the detectability of texts produced by large lan-
guage models. Considering 37 different configura-
tions—varying multiple generation parameters, we
have shown that even modest adjustments in the
(sub)word-level generation distribution can under-
mine state-of-the-art detectors, observing AUROC
drops from near-perfect down to null simply by
tuning the repetition-penalty.

Our analysis sheds light on the underlying failure
mechanisms: different sampling techniques induce
distinctive distributional signatures (e.g., changes
in token entropy or frequency tails) that current
detectors are not able to recognize. This suggests
that robustness in detection is still an open issue,
both for supervised and unsupervised methods.

By exposing blind spots in current systems, we
aim to steer the field toward more reliable and
trustworthy methods for distinguishing human and
machine-generated text, an ability that is bound to
become essential in an era of fluent and accessible
generative models.
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Limitations

In this empirical study of the impact of the genera-
tion parameters and strategies used in text genera-
tion, we had to limit ourselves to a small number of
parameters, and to a restricted set of values. Like-
wise, our study only considered one supervised ar-
chitectures, and two unsupervised models. Finally,
only text generation in English was considered, us-
ing Llama-3.2-3B. These choices were made for
the sake of limiting the computational expenses
to a reasonable budget. We still believe that they
are representative of the way language models are
currently used to generate texts, and that our main
conclusions —that text detection benchmarks should
be expended to better assess detectors robustness—
would carry over more generally to other languages,
models, and architectures.

Ethical Statement

With the increasing availability of sophisticated
text generation tools, the need for effective text
detection systems is becoming ever more pressing,
notably to combat fraud, plagiarism, deception and
fake news on the Internet. Yet, artificial text detec-
tion tools are not infallible —as we have ourselves
amply documented— and consequently should not
be used as the only basis for punitive actions or
decisions that could affect individuals, notably stu-
dents, or organizations. Detection methods must
then always be complemented by human oversight
and verification before taking any drastic measure,
to ensure fairness of treatment.
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A FastDetectGPT Details

As mentioned in Section 6.3, FastDetectGPT’s
scoring method is similar to Binoculars, but (a)
subtracts values instead of taking their ratio, (b)
approximates the cross-entropy with N Monte-
Carlo samples from the auxiliary model {g; ~
r(Yt]y<t)}i]\L1, and (c), normalizes their scores,
yielding the following formula:

N
—logq(yily<t) + Z log q(7ily<t)
SFast — =1 ,
ar (9) a(y<t)
N
Py & 72 ( log q(yily <t)
i:l
N 2
NZ og q(7jly<t) ) : (7

B Correlation Details

Besides Spearman reported in Table 5, we also cal-
culated Kendall and Pearson correlations as well
as the corresponding p-values. They were all cal-
culated using scipy.stats and are reported in Ta-
bles 7 and 8.

Furthermore, we also looked at the correlation
between diversity metrics reported in Table 2 and
performance of the detectors in Table 4. They are
displayed in Table 9
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n-sampling

Repetition penalty

Method le-4 le-3 Se-3 0.01 0.05 0.10 Method 1.05 1.10 1.15 1.20 1.25 1.30
DNA-GPT (temp=0.7) 0.4212 0.4623 0.4987 0.5324 0.6155 0.6434  DNA-GPT (temp=0.7) 0.2054 0.0956 0.0539 0.0365 0.0374 0.0177
DNA-GPT (temp=1)  0.4494 0.5055 0.5340 0.5645 0.6346 0.6623  DNA-GPT (temp=1)  0.2049 0.1010 0.0562 0.0330 0.0367 0.0218
Temperature Top-k
Method 0.5 0.7 0.9 1.1 1.2 1.3 Method 10 20 50 75 100 1000
DNA-GPT (temp=0.7) 0.8690 0.6974 0.4900 0.1688 0.0314 0.0085  DNA-GPT (temp=0.7) 0.5959 0.5582 0.5092 0.4980 0.4656 0.3955
DNA-GPT (temp=1)  0.8706 0.7121 0.5172 0.1780 0.0446 0.0159  DNA-GPT (temp=1)  0.6411 0.5848 0.5403 0.5320 0.5014 0.4075
Top-p Typical sampling
Method 0.3 0.5 0.7 0.8 0.9 0.95 Method 0.3 0.5 0.7 0.8 0.9 0.95
DNA-GPT (temp=0.7) 0.9362 0.8621 0.6957 0.5953 0.4889 0.4329  DNA-GPT (temp=0.7) 0.3877 0.4850 0.5769 0.5696 0.4867 0.4301
DNA-GPT (temp=1)  0.9359 0.8537 0.7014 0.6177 0.5095 0.4448  DNA-GPT (temp=1)  0.3975 0.5226 0.5945 0.5904 0.5062 0.4662

Table 6: ROC AUC of DNA-GPT under default (temp=0.7) and temp=1 across decoding parameters, by adapter

family.

Metric Pearson 7 Spearman p Kendall 7

Metric Pearson r Spearman p Kendall 7

Compares ¢ and samples from p
Perplexity -0.458 (p=5.0e-03)
Entropy -0.910 (p=1.4e-14)

-0.942 (p=1.1e-17)
-0.977 (p=2.4e-24)

-0.814 (p=3.3e-12)
-0.888 (p=3.2¢-14)

Compares ¢ and samples from p
Perplexity -0.611 (p=7.7e-05)
Entropy -0.935 (p=7.4e-17)

-0.938 (p=2.9e-17)
-0.969 (p=3.4e-22)

-0.803 (p=5.5e-12)
-0.857 (p=1.9¢-13)

Compares ¢ and p

TV -0.056 (p=7.4e-01)
L2 -0.254 (p=1.4e-01)
Cross-entropy 0.502 (p=1.8e-03)
KL (with adapted dist.)  0.502 (p=1.8e-03)

0.196 (p=2.5¢-01)
0.082 (p=6.3¢-01)
0.728 (p=4.9¢-07)
0.728 (p=4.9¢-07)

0.180 (p=1.2¢-01)
0.126 (p=2.8¢-01)
0.550 (p=2.6e-06)
0.550 (p=2.6e-06)

Compares g and p

TV 0.050 (p=7.7e-01)
L2 -0.118 (p=4.9¢-01)
Cross-entropy 0.526 (p=9.8e-04)
KL (with adapted dist)  0.526 (p=9.8e-04)

0.296 (p=8.0e-02)
0.176 (p=3.0¢-01)
0.756 (p=9.4¢-08)
0.756 (p=9.4¢-08)

0.254 (p=2.9e-02)
0.206 (p=7.7e-02)
0.597 (p=3.0e-07)
0.597 (p=3.0e-07)

Compares g and r

KL (between models) -0.850 (p=5.6e-11) -0.907 (p=2.5e-14) -0.757 (p=9.6e-11)

Rényi v = 0.2 -0.890 (p=4.0e-13) -0.954 (p=2.3e-19) -0.820 (p=2.5e-12)
Rényi o = 0.4 -0.881 (p=1.4e-12) -0.955 (p=1.7e-19) -0.825 (p=1.8e-12)
Rényi v = 0.6 -0.872 (p=4.5e-12) -0.954 (p=2.2e-19) -0.829 (p=1.4e-12)
Rényi v = 0.8 -0.862 (p=1.5e-11)  -0.942 (p=9.9¢-18) -0.811 (p=4.0e-12)
Rényi v = 1.2 -0.828 (p=4.5e-10) -0.735 (p=3.4e-07) -0.556 (p=2.0e-06)
Rényi = 1.4 -0.832 (p=3.1e-10) -0.532 (p=8.5¢-04) -0.373 (p=1.4e-03)
Rényi o = 1.6 -0.788 (p=1.2e-08) -0.197 (p=2.5¢-01) -0.021 (p=8.6e-01)
Rényi v = 1.8 -0.624 (p=4.8e-05) -0.058 (p=7.4e-01)  0.056 (p=6.3e-01)
Rényi @ = 2.0 -0.423 (p=1.0e-02)  0.046 (p=7.9¢-01)  0.110 (p=3.5e-01)

Table 7: Correlations with Binoculars AUROC

C DNA-GPT

DNA-GPT, a rewriting method developed by Yang
et al. (2024), aims to identify text written by Chat-
GPT using a base GPT model (either versions 3.5 or
4 at the time of release of the paper). This method
first prompts the base LLM to rewrite an excerpt of
text, then counts the number of common n-grams
present in both the original and rewritten versions,
from which it assigns a score. The intuition is that
if the number of common n-gram is high, the text
is likely to be artificial. In our study, as we aim
to detect text written by a model using that system
itself, we tried both the default DNA-GPT param-
eter of rewriting using temperature 0.7 and also a
temperature of 1. However, outside of small top-p
or temperature values, the results of this approach
were quite poor, see Table 6, a sign that we were
too far from the intended setup for this method.

Compares ¢ and

KL (between models)  -0.898 (p=1.1e-13) -0.919 (p=2.4e-15) -0.765 (p=5.2¢-11)

Rényi a = 0.2 -0.921 (p=1.7e-15) -0.958 (p=4.2¢-20) -0.828 (p=1.3e-12)
Rényi o = 0.4 -0.917 (p=3.7e-15) -0.961 (p=1.6e-20) -0.833 (p=9.4e-13)
Rényi a = 0.6 -0.912 (p=9.4e-15) -0.959 (p=2.9¢-20) -0.831 (p=1.0e-12)
Rényi a = 0.8 -0.907 (p=2.7e-14) -0.950 (p=9.9¢-19) -0.813 (p=3.1e-12)
Rényi o = 1.2 -0.882 (p=1.3e-12) -0.754 (p=1.1e-07) -0.565 (p=1.2e-06)
Rényia =14 -0.878 (p=2.1e-12) -0.553 (p=4.6e-04) -0.376 (p=1.2e-03)
Rényia = 1.6 -0.810 (p=2.2e-09) -0.179 (p=3.0e-01)  0.035 (p=7.6e-01)
Rényi o = 1.8 -0.608 (p=8.4e-05) -0.025 (p=8.9¢-01)  0.111 (p=3.4e-01)
Rényi a = 2.0 -0.380 (p=2.2e-02)  0.082 (p=6.3e-01)  0.165 (p=1.6e-01)

Table 8: Correlations with FastDetectGPT AUROC

| Binoculars FastDetectGPT

Average length —0.572 —0.454
Hapax —0.129 —0.214
Heaps 0.462 0.346
MTLD —0.691 —0.751
Perplexity —0.458 —0.611
Simpson 0.969 —0.946
Zipf, 0.839 0.832

Table 9: Pearson correlation coefficients between diver-
sity metrics and the AUROC of Binoculars and FastDe-
tectGPT.

D Examples of Generations

We display stacked examples for one prompt: hu-
man text followed by multiple generations under
different parameters to show that extreme diver-
sity settings degrade text quality, low diversity (low
Temperature, low top-p, low top-k) leads to repeti-
tion while too high diversity yields nonsensical pro-
ductions (Temperature above 1, repetition-penalty).
However, Temperature at 0.9 and top-p close to 1
generate outputs that could pass for genuine. The



prompt used was “The following is the full text of
the abstract for a research paper titled “Adaptive
Morphological Reconstruction for Seeded Image
Segmentation” from arxiv.org:”

Morphological reconstruction (MR) is often employed
by seeded image segmentation algorithms such as
watershed transform and power watershed as it is able to
filter seeds (regional minima) to reduce
over-segmentation. However, MR might mistakenly
filter meaningful seeds that are required for generating
accurate segmentation and it is also sensitive to the scale
because a single-scale structuring element is employed.
In this paper, a novel adaptive morphological
reconstruction (AMR) operation is proposed that has
three advantages. Firstly, AMR can adaptively filter
useless seeds while preserving meaningful ones.
Secondly, AMR is insensitive to the scale of structuring
elements because multiscale structuring elements are
employed. Finally, AMR has two attractive properties:
monotonic increasingness and convergence that help
seeded segmentation algorithms to achieve a hierarchical
segmentation. Experiments clearly demonstrate that
AMR is useful for improving algorithms of seeded
image segmentation and seed-based spectral
segmentation. Compared to several state-of-the-art
algorithms, the proposed algorithms provide better
segmentation results requiring less computing time.
Source code is available at
https://github.com/SUST-reynole/AMR.

-Adaptive Morphological Reconstruction for Seeded
Image Segmentation Morphological image processing is
a powerful method for image segmentation. However,
the standard morphological reconstruction method has a
limitation in that it cannot reconstruct the object inside
an object. In this paper, we propose a new
morphological reconstruction method that can
reconstruct the object inside an object. The proposed
method is based on a morphological reconstruction
method with a seed point, but it is different from the
standard morphological reconstruction method. We first
give a definition of the object inside an object. Then, we
propose a new morphological reconstruction method that
can reconstruct the object inside an object. The proposed
method is based on the definition of the object inside an
object. We show that the proposed method is more
accurate than the standard morphological reconstruction
method. We also show that the proposed method is more
efficient than the standard morphological reconstruction
method. The following is the full text of the abstract for
a research paper titled "Adaptive Morphological
Reconstruction for Seeded Image Segmentation" from
arxiv.org:-Adaptive Morphological Reconstruction for
Seeded Image Segmentation Morphological image
processing is a powerful method for image segmentation.
However, the standard morphological reconstruction
method has a limitation in that it cannot reconstruct the
object inside an object. In this paper, we propose a new
morphological reconstruction method that can
reconstruct the object inside an object. The proposed
method is based on a morphological reconstruction

method with a seed point, but it is different from the
standard morphological reconstruction method. We first
give a definition of the object inside an object. Then, we
propose a new morphological reconstruction method
that can reconstruct the object inside an object. The
proposed method is based on the definition of the object
inside an object. We show that the proposed method is
more accurate than the standard morphological
reconstruction method. We also show that the proposed
method is more efficient than the standard
morphological reconstruction method.

(free access). Morphological Reconstruction (MR) is a
way to construct a larger structure growing from its
smaller seeds. In this article, we proposed a new
Adaptive Morphological Reconstruction(SAR)
algorithm based on an adaptive threshold method for
better segmentation performance of medical images. It
is used for future applications in medical image analysis
that require precise segmentation. Our proposed SAR
algorithm consists of five steps: showing an image with
scattered region, computing the gradient magnitude of
an image in the X axis, using a threshold method to
choose the threshold value, reconstructing the larger
structure using morphological reconstruction based on
the threshold value, and finally, taking into account
larger structure that is reconstructed to better segment
the image. The experimental results show that our new
algorithm performs best among the current
state-of-the-art reconstruction algorithm for medical
image segmentation and provides better analysis
capability. In conclusion, our proposed SAR algorithm
can be a more practical and effective algorithm in the
next version of medical image analysis applications.

[from arxiv.org] Seeded image segmentation is an useful
task in many areas for decades. Late contributions
present a morphology kernel for surface reconstruction,
called regional smile metric, which can be operating for
any arbitrary neighborhood structure, e.g. 3-connected
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[Open Content Network context text, publication date,
length]. Abstract— Image segmentation is one of the
common image processing tasks needed in computer
vision applications. Many image segmentation methods
are based upon optimizing an energy functional, with
physical constraints to allow segment based
optimization. Difficulties (artifacts and pre-processing)
in applying constraints can lead to wrong segmentations,
so only using energies may seem more reliable. Most
existing energy models cannot adaptively balance
between true, boundary, and false boundary information,
so resulting image segmentations are unsatisfactory. It is
proposed here to construct a morphological
reconstruction process based upon the observed data, e.g.
a physical constraintigraph. It then estimates boundary
curves from this physical constraintigraph. The adaptive
morphological reconstruction is based on balance. The
optimal number of branches and iterations are
determined automatically. Then an iterative optimization
process combines minimizing description length with
determining local or global minima. A morphologically
constrained Petri net energy model has been developed.
Preliminary data using pepper/noise shows a theoretical
methodology.

Segmentation of a medical image is an important step
before any medical diagnosis. However, there are always
some regions which cannot be segmented accurately
because of poor contrast between tissues and artifacts in
images. In this paper, we propose a new adaptive
morphological reconstruction method for seeded image
segmentation. The algorithm is based on the classical
morphological reconstruction method and a new
adaptive thresholding technique. In the classical
morphological reconstruction method, all the seeds in
the image are used in reconstruction, and the

segmentation result is not accurate. In the proposed
method, we first calculate the local threshold of each
region by the new adaptive thresholding technique. Then
we reconstruct the region with the local threshold in the
image, and obtain a preliminary segmentation result.
Finally, the new adaptive thresholding technique is used
to resegment the preliminary result. The new adaptive
thresholding technique is used to resegment each region
with its local threshold. Therefore, the proposed method
can accurately segment the region which cannot be
segmented by the classical morphological reconstruction
method. Experiments on 2D and 3D images show the
effectiveness of the proposed method for seeding image
segmentation. Adaptive morphological reconstruction
for seeded image segmentation by Xueyuan Wu
(2021-06-21) A Morphological Reconstruction Method
for Seeded Image Segmentation by Xueyuan Wu
(2021-06-21) A Morphological Reconstruction Method
for Seeded Image Segmentation by Xueyuan Wu
(2021-06-21)

Abstract: Seed point: Some part of the target object will
be observable on an image, and we can choose some
point to monitor, which is called seed point now. The
general method of the morphologic reconstruction is that
if we already know the results of all reconstruction with
seed points from, we can update the new reconstruction
results. In other words we can: introduce a seed points
from $\\mathbf{E_{s}}$ (the set of seed points); Since
we could not observed a part of the target system, it is
very difficult to choose the neighborhood structure of the
seed points from $\\mathbf{E_{s}}$. In this paper, we
propose a method that will help us to choose the correct
neighborhood structure automatically. As shown in the
following figure, region 1 and 2 could not determine the
neighborhood relationship from the image information,
so we cannot directly use length 2 as our application
seed points. However, neighbors of region 3 may have a
good relationship, and we could find an immediate
neighbor of region 3, which we already observed, from
the image information. Since we can find an immediate
neighbor, length 2 could be our application seed points.
The following figure shows a schematic diagram of the
seed point learning. The aim of seed point learning is to
find a set of seed points $\\mathbf{E_{s}}$ (in the case
of $f_{s}(NIN_{m}=2)$ is from all experiment with
neighborhood length m, it is appropriate to select one
with the maximum value in the seed points $E_{s}$)
which represents some coherent and valid sub-structure.
We assume that the reconstruction of the morphological
reconstruction image with the seed point knowledge
from $\\mathbf{E_{s}}$ is represented as $\\vec{\\psi}$.
We can determine the neighborhood points of seed point
$\\wec{\\omega} \\in \mathbf{E_{s}}$ related to
function $g$ and image $f$ using Eq.(1), where
$r=\\{\\mathbf{ W }*{i} \mathbf{ U}*{j}\\}$ and
$1=If_{s}(NINvec{\\omega}*{k})I$, expressed as Eq.(2).
For the reconstruction image $\\psi$, we apply
$\\vec{\\omega}$ as seed point to find the neighbor
points form learning using Eq.(2) as the application
scope, then



The problem of image segmentation is one of the most
important tasks in computer vision. In this paper, we
propose a novel adaptive morphological reconstruction
(AMR) algorithm for seeded image segmentation. The
proposed algorithm is based on the adaptive
morphological reconstruction (AMR) algorithm, which
is a powerful tool for image segmentation. The AMR
algorithm is based on the concept of morphological
reconstruction, which is a powerful tool for image
segmentation. The AMR algorithm is based on the
concept of morphological reconstruction, which is a
powerful tool for image segmentation. The AMR
algorithm is based on the concept of morphological
reconstruction, which is a powerful tool for image
segmentation. The AMR algorithm is based on the
concept of morphological reconstruction, which is a
powerful tool for image segmentation. The AMR
algorithm is based on the concept of morphological
reconstruction, which is a powerful tool for image
segmentation. The AMR algorithm is based on the
concept of morphological reconstruction, which is a
powerful tool for image segmentation.

A versatile approach to dealing with the incomplete,
noisy and cluttered nature of medical images, which are
acquired based on the inherently noisy nature of human
vision, consists in accurately reconstructing the object of
interest, making use of data in medical images obtained
from the background. This is commonly done using
Iterative Morphological Reconstruction (IMR), which is
especially useful when the objects are structured or have
known affinities. However, the quality of these restored
images depends on the segmentation or seed region used.
Manually adapting the seed for a variety of objects in a
single domain is tedious and resource intensive,
especially when the domain involves long segmentation
and integration. In this research paper, we present a
simple yet effective method of leveraging prior
knowledge by dynamically adjusting the bounding of the
seed region using Markov Random Fields (MRF) to
boost segmentation accuracy. This is a good example of
the class of deep learning methods that automate a
complex task. For your reading pleasure we present a
quick intro video to adaptive morphological
reconstruction for seeded image segmentation.

E Details of the Supervised Results

Figure 4 gives out the full details of our super-
vised experiment. For each row, the human train
set is identical and what varies are the machine-
written texts, generated using the parameter the
row is named after. Same thing for the columns,
the human test set does not change while the gener-
ated parts do, according to the column name. We
can see that training on a uniform mixture of all
texts (last row) does yield a robust detector for all
testing situations. 47 is the seed used to randomly
sample our texts in order to make the mixture.
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Figure 4: Heatmap of accuracy detection rates when
training using data generated with the row parameter
and testing on the column one.
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Figure 5: Heatmap of AUC detection rates when
training using data generated with the row parameter
and testing on the column one.These values can be
directly compared to the ones in Table 4.
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